Try our new research platform with insights from 80,000+ expert users

Elastic Search vs Faiss comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Mar 5, 2025

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Elastic Search
Ranking in Vector Databases
3rd
Average Rating
8.2
Reviews Sentiment
6.6
Number of Reviews
74
Ranking in other categories
Indexing and Search (1st), Cloud Data Integration (9th), Search as a Service (1st)
Faiss
Ranking in Vector Databases
5th
Average Rating
8.0
Reviews Sentiment
3.3
Number of Reviews
3
Ranking in other categories
Open Source Databases (12th)
 

Mindshare comparison

As of October 2025, in the Vector Databases category, the mindshare of Elastic Search is 4.5%, down from 6.9% compared to the previous year. The mindshare of Faiss is 5.5%, down from 13.9% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Vector Databases Market Share Distribution
ProductMarket Share (%)
Elastic Search4.5%
Faiss5.5%
Other90.0%
Vector Databases
 

Featured Reviews

Louis McCoy - PeerSpot reviewer
Searches through billions of documents have become impressively fast and consistent
The seamless scalability is something I see as among the best features Elastic Search offers. The speed with which Elastic Search is able to search through all of the documents we place into it is quite remarkable, as we search through 65 billion documents in less than a second in most cases, on a constant consistent basis. I find configuring relevant searches within Elastic Search platform very straightforward. Elastic Search is easily scalable. The customer support for Elastic Search is quite good. I advise others looking into using Elastic Search to think about the future of your platform and where you intend it to be in five years, and based on that, which version of Elastic Search best suits the needs of your platform. Additionally, jump into the AI products first as you're in the planning phase so that as you're filling out your data, the AI products and machine learning products can enrich the data real-time early on in the process, which will save you a lot of time later. The overall performance of the platform, scalability of the platform and other additional features, especially when it comes to AI, really earn the nine.
Kalindu Sekarage - PeerSpot reviewer
Integration improves accuracy and supports token-level embedding
The best features FAISS offers for my team include seamless integration with Colbert and the ability to use FAISS via the Ragatouille framework, which is tailor-made for using the Colbert model. Feature-wise, FAISS allows for more accurate result retrieval, and retrieval speed is also good when comparing the index size. Regarding features, I also emphasize that the usability of FAISS is very seamless, particularly its integration with Colbert and Ragatouille. FAISS has positively impacted my organization by helping us increase the accuracy of retrieval documents; when we store documents in token-level embedding, the accuracy will be high. Additionally, we do not need any external server to host FAISS, allowing us to integrate it with our backend framework, making it a very flexible framework.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"All the quality features are there. There are about 60 to 70 reports available."
"The most valuable features are the data store and the X-pack extension."
"I find the solution to be fast."
"ELK Elasticsearch is 100% scalable as scalability is built into the design"
"The most valuable feature of Elasticsearch is its convenience in handling unstructured data."
"The ability to aggregate log and machine data into a searchable index reduces time to identify and isolate issues for an application. Saves time in triage and incident response by eliminating manual steps to access and parse logs on separate systems, within large infrastructure footprints."
"The solution is quite scalable and this is one of its advantages."
"The initial setup is fairly simple."
"I used Faiss as a basic database."
"The product has better performance and stability compared to one of its competitors."
 

Cons

"There is a lack of technical people to develop, implement and optimize equipment operation and web queries."
"Elastic Search should provide better guides for developers."
"I would like to see more integration for the solution with different platforms."
"There are a lot of manual steps on the operating system. It could be simplified in the user interface."
"They should improve its documentation. Their official documentation is not very informative. They can also improve their technical support. They don't help you much with the customized stuff. They also need to add more visuals. Currently, they have line charts, bar charts, and things like that, and they can add more types of visuals. They should also improve the alerts. They are not very simple to use and are a bit complex. They could add more options to the alerting system."
"The UI point of view is not very powerful because it is dependent on Kibana."
"There are some features lacking in ELK Elasticsearch."
"Elastic Enterprise Search can improve by adding some kind of search that can be used out of the box without too much struggle with configuration. With every kind of search engine, there is some kind of special function that you need to do. A simple out-of-the-box search would be useful."
"It would be beneficial if I could set a parameter and see different query mechanisms being run."
"One of the drawbacks of Faiss is that it works only in-memory. If it could provide separate persistent storage without relying on in-memory, it would reduce the overhead."
"It could be more accessible for handling larger data sets."
 

Pricing and Cost Advice

"The solution is affordable."
"We are using the free open-sourced version of this solution."
"The solution is less expensive than Stackdriver and Grafana."
"There is a free version, and there is also a hosted version for which you have to pay. We're currently using the free version. If things go well, we might go for the paid version."
"The version of Elastic Enterprise Search I am using is open source which is free. The pricing model should improve for the enterprise version because it is very expensive."
"The solution is free."
"The pricing structure depends on the scalability steps."
"The tool is an open-source product."
"It is an open-source tool."
"Faiss is an open-source solution."
report
Use our free recommendation engine to learn which Vector Databases solutions are best for your needs.
868,759 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
14%
Financial Services Firm
13%
Manufacturing Company
8%
Government
8%
Computer Software Company
18%
Financial Services Firm
13%
Manufacturing Company
9%
Educational Organization
8%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business32
Midsize Enterprise8
Large Enterprise36
No data available
 

Questions from the Community

What do you like most about ELK Elasticsearch?
Logsign provides us with the capability to execute multiple queries according to our requirements. The indexing is very high, making it effective for storing and retrieving logs. The real-time anal...
What is your experience regarding pricing and costs for ELK Elasticsearch?
We used the open-source version of Elasticsearch, which was free.
What needs improvement with ELK Elasticsearch?
Elastic Search could improve in areas such as search criteria and query processes, as search times were longer prior to implementing Elastic Search. Elastic Search has limitations for handling huge...
What do you like most about Faiss?
I used Faiss as a basic database.
What is your experience regarding pricing and costs for Faiss?
I did not purchase FAISS through the AWS Marketplace because FAISS is an open-source product. My experience with pricing, setup cost, and licensing is straightforward, as there is no cost for acqui...
What needs improvement with Faiss?
I currently do not think there is anything to be improved based on our experience, as Faiss performs as we expected for our workflow. I would like to see improvement in the fact that FAISS currentl...
 

Comparisons

 

Also Known As

Elastic Enterprise Search, Swiftype, Elastic Cloud
No data available
 

Overview

 

Sample Customers

T-Mobile, Adobe, Booking.com, BMW, Telegraph Media Group, Cisco, Karbon, Deezer, NORBr, Labelbox, Fingerprint, Relativity, NHS Hospital, Met Office, Proximus, Go1, Mentat, Bluestone Analytics, Humanz, Hutch, Auchan, Sitecore, Linklaters, Socren, Infotrack, Pfizer, Engadget, Airbus, Grab, Vimeo, Ticketmaster, Asana, Twilio, Blizzard, Comcast, RWE and many others.
1. Facebook 2. Airbnb 3. Pinterest 4. Twitter 5. Microsoft 6. Uber 7. LinkedIn 8. Netflix 9. Spotify 10. Adobe 11. eBay 12. Dropbox 13. Yelp 14. Salesforce 15. IBM 16. Intel 17. Nvidia 18. Qualcomm 19. Samsung 20. Sony 21. Tencent 22. Alibaba 23. Baidu 24. JD.com 25. Rakuten 26. Zillow 27. Booking.com 28. Expedia 29. TripAdvisor 30. Rakuten 31. Rakuten Viber 32. Rakuten Ichiba
Find out what your peers are saying about Elastic Search vs. Faiss and other solutions. Updated: September 2025.
868,759 professionals have used our research since 2012.