Try our new research platform with insights from 80,000+ expert users

Amazon DocumentDB vs Microsoft Azure Cosmos DB comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Jan 25, 2026

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Amazon DocumentDB
Ranking in Managed NoSQL Databases
5th
Average Rating
8.2
Reviews Sentiment
4.0
Number of Reviews
6
Ranking in other categories
No ranking in other categories
Microsoft Azure Cosmos DB
Ranking in Managed NoSQL Databases
1st
Average Rating
8.2
Reviews Sentiment
6.9
Number of Reviews
109
Ranking in other categories
Database as a Service (DBaaS) (4th), NoSQL Databases (2nd), Vector Databases (1st)
 

Mindshare comparison

As of January 2026, in the Managed NoSQL Databases category, the mindshare of Amazon DocumentDB is 8.1%, down from 9.9% compared to the previous year. The mindshare of Microsoft Azure Cosmos DB is 16.4%, down from 17.2% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Managed NoSQL Databases Market Share Distribution
ProductMarket Share (%)
Microsoft Azure Cosmos DB16.4%
Amazon DocumentDB8.1%
Other75.5%
Managed NoSQL Databases
 

Featured Reviews

Hemanth Perepi - PeerSpot reviewer
Technical Lead at Trianz
Supports high-level data management and secure migration
Over the past few months, I’ve been working closely with a managed database service, and a few features stood out as game changers for me and my team: MongoDB Compatibility – The seamless migration experience was a huge win. No need to rewrite code or change drivers, which meant less friction and faster adoption for our developers. Fully Managed Service – Patching, backups, and monitoring are all automated. This freed up our team to focus on building applications instead of managing infrastructure. Separation of Compute & Storage – The flexibility to scale compute and storage independently gave us both cost savings and better performance optimization. Multi-AZ High Availability – Automatic failover and cross-AZ replication gave us peace of mind with improved uptime and disaster recovery. Performance at Scale – Even with large datasets, performance has remained consistent. Read replicas and efficient indexing have been especially valuable for read-heavy workloads. Security – End-to-end encryption, VPC isolation, and IAM integration made enterprise-level security feel straightforward and reliable. Backup & Recovery – Point-in-time recovery with automated backups made data protection effortless.
reviewer2724105 - PeerSpot reviewer
Senior Director of Product Management at a tech vendor with 1,001-5,000 employees
Provides super sharp latency, excellent availability, and the ability to effectively manage costs across different tenants
For integrating Microsoft Azure Cosmos DB with other Azure products or other products, there are a couple of challenges with the current system. Right now, the vectors are stored as floating-point numbers within the NoSQL document, which makes them inefficiently large. This leads to increased storage space requirements, and searching through a vast number of documents in the vector database becomes quite costly in terms of RUs. While the integration works well, the expense associated with it is relatively high. I would really like to see a reduction in costs for their vector search, as it is currently on the expensive side. The areas for improvement in Microsoft Azure Cosmos DB are vector pricing and vector indexing patterns, which are unintuitive and not well described. I would also like to see the parameters of Fleet Spaces made more powerful, as currently, it's somewhat lightweight. I believe they've made those changes intentionally to better understand the cost model. However, we would like to take a more aggressive approach in using it. One of the most frustrating aspects of Microsoft Azure Cosmos DB right now is that you can only store one vector per document. Additionally, you must specify the configuration of that vector when you create an instance of Microsoft Azure Cosmos DB. Once the database is set up, you can't change the vector configuration, which is incredibly limiting for experimentation. You want the ability to try different settings and see how they perform, as there are numerous use cases for storing more than one vector in a document. While interoperability within the vector database is acceptable—for example, I can search for vectors—I still desire a richer set of configuration options.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Migrations are easy using this product."
"There are many benefits to using Amazon DocumentDB, for example, regarding the price, you can start with a small database and when you need more performance, you can grow the database."
"Efficient data retrieval with millisecond fetch times sets it apart from RDS."
"Amazon DocumentDB is a simple solution."
"Efficient data retrieval with millisecond fetch times sets it apart from RDS."
"Its speed has had the most significant impact on our projects. For starters, we used it for its flexibility. With DocumentDB, you're not tied to a rigid structure like you are with Aurora or other relational databases. This makes it great for startups."
"The autoscale feature is the most useful for us."
"Azure Cosmos DB offers numerous data connectors that provide a platform for seamless integration with various platforms and visualization tools such as Power BI. It allows connection via multiple data connectors to integrate data in any desired format."
"Microsoft Azure Cosmos DB simplifies the process of saving and retrieving data."
"The fact that scalability can be achieved by simply configuring availability zones is very attractive."
"Overall, I would rate Microsoft Azure Cosmos DB a nine out of ten."
"One of the nice features is the ability to auto-scale"
"The speed is impressive, and integrating our power-up database with Kafka was an improvement."
"Cosmos DB performs exceptionally well and has not caused any issues that necessitate adjustments in nodes for improved performance."
 

Cons

"There's a bit of a learning curve at the beginning."
"However, when you need more volume or more registers, it becomes complicated because the performance adjustments and tuning are challenging."
"Improvements for Amazon DocumentDB could focus on enhancing high availability, sharding methods, replication techniques, and automatic failover in case the primary goes down, as continuous backup is an excellent option for disaster recovery."
"The technical support could be improved."
"One possible improvement could be a hybrid database solution, where parts of the application leverage a relational database alongside DocumentDB. If a system were heavily relational in nature, a database like PostgreSQL might be a good fit."
"Improvements for Amazon DocumentDB could focus on enhancing high availability, sharding methods, replication techniques, and automatic failover in case the primary goes down, as continuous backup is an excellent option for disaster recovery."
"Azure Cosmos DB is generally a costly resource compared to other Azure resources. It comes with a high cost."
"If you want to bring the data from AWS, you must pay data egress costs. That's a pain point."
"Currently, I have no suggestions for enhancement or new implementations in Microsoft Azure Cosmos DB. However, the cost can sometimes be high, especially during cross-partition queries with large data amounts."
"One area that could be improved is indexing. Some of the developers struggle with the way the indexing works. We are exploring vector indexing, which we haven't examined fully yet. Indexing is an aspect we're looking to improve upon potentially."
"There are some disadvantages as it is costly compared to other NoSQL databases. It has a complex pricing model and has a strict partitioning strategy."
"In that scenario, two things can be improved."
"Overall, it works very well and fits the purpose regardless of the target application. However, by default, there is a threshold to accommodate bulk or large requests."
"I am disappointed with the lack of compatibility of the Microsoft Azure Cosmos DB emulator with Mac."
 

Pricing and Cost Advice

Information not available
"It's expensive. I would rate it a seven out of ten for pricing."
"The tool is not expensive."
"Everything could always be cheaper. I like that Cosmos DB allows us to auto-scale instead of pre-provisioning a certain capacity. It automatically scales to the demand, so we only pay for what we consume."
"Microsoft Azure Cosmos DB pricing is based on RUs. Reading 1 KB document costs one RU, whereas writing one document costs five RUs. Pricing for querying depends on the complexity of the query. If you increase the document size, it will automatically increase the RU cost."
"It is cost-effective. They offer two pricing models. One is the serverless model and the other one is the vCore model that allows provisioning the resources as necessary. For our pilot projects, we can utilize the serverless model, monitor the usage, and adjust resources as needed."
"Its cost is transparent. Pricing depends on the transaction and data size, but overall, it is cheaper compared to hosting it on your corporate network due to other factors like power consumption."
"The Cosmos DB pricing model, initially quite complicated, became clear after consulting with Azure Advisor, allowing us to proceed with confidence."
"Its pricing structure is quite flexible."
report
Use our free recommendation engine to learn which Managed NoSQL Databases solutions are best for your needs.
881,082 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
19%
Financial Services Firm
12%
Manufacturing Company
9%
Educational Organization
7%
Legal Firm
13%
Financial Services Firm
11%
Comms Service Provider
9%
Manufacturing Company
8%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
By reviewers
Company SizeCount
Small Business33
Midsize Enterprise21
Large Enterprise58
 

Questions from the Community

What advice do you have for others considering Amazon DocumentDB?
Amazon DocumentDB offers us many useful features. It is definitely a solution that an organization in need of comprehensive and effective document management should invest its money into. We are im...
What do you like most about Amazon DocumentDB?
Its speed has had the most significant impact on our projects. For starters, we used it for its flexibility. With DocumentDB, you're not tied to a rigid structure like you are with Aurora or other ...
What is your experience regarding pricing and costs for Amazon DocumentDB?
The pricing and licensing of Amazon DocumentDB is managed directly by the client team with the vendor, so I am not involved in that aspect.
What do you like most about Microsoft Azure Cosmos DB?
The initial setup is simple and straightforward. You can set up a Cosmos DB in a day, even configuring things like availability zones around the world.
What is your experience regarding pricing and costs for Microsoft Azure Cosmos DB?
Microsoft Azure Cosmos DB's pricing model has aligned with my budget expectations because I can tune the RU as I need to, which helps a lot. Microsoft Azure Cosmos DB's dynamic auto-scale or server...
What needs improvement with Microsoft Azure Cosmos DB?
I have not utilized Microsoft Azure Cosmos DB multi-model support for handling diverse data types. I'm not in the position to decide if clients will use Microsoft Azure Cosmos DB or any other datab...
 

Also Known As

No data available
Microsoft Azure DocumentDB, MS Azure Cosmos DB
 

Overview

 

Sample Customers

Finra, The Washington Post, Freshop
TomTom, KPMG Australia, Bosch, ASOS, Mercedes Benz, NBA, Zero Friction, Nederlandse Spoorwegen, Kinectify
Find out what your peers are saying about Amazon DocumentDB vs. Microsoft Azure Cosmos DB and other solutions. Updated: December 2025.
881,082 professionals have used our research since 2012.