Try our new research platform with insights from 80,000+ expert users

AWS Lake Formation vs BigQuery comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 18, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

AWS Lake Formation
Ranking in Cloud Data Warehouse
7th
Average Rating
8.0
Reviews Sentiment
5.7
Number of Reviews
21
Ranking in other categories
No ranking in other categories
BigQuery
Ranking in Cloud Data Warehouse
4th
Average Rating
8.2
Reviews Sentiment
7.0
Number of Reviews
42
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of January 2026, in the Cloud Data Warehouse category, the mindshare of AWS Lake Formation is 5.0%, up from 5.0% compared to the previous year. The mindshare of BigQuery is 7.7%, up from 7.5% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Cloud Data Warehouse Market Share Distribution
ProductMarket Share (%)
BigQuery7.7%
AWS Lake Formation5.0%
Other87.3%
Cloud Data Warehouse
 

Featured Reviews

Ciro Baldim Guerra - PeerSpot reviewer
Sr Analytics Engineer at Itau Unibanco S.A.
Has improved data governance by enabling clear ownership and structured access across teams
In my company, Itaú, we don't utilize all AWS offerings due to rigorous security measures. We operate approximately six to eight months behind other available services. I'm uncertain if gaps exist because of this limitation, though the system functions effectively for us. AWS Lake Formation offers column-level access control for databases, but we haven't implemented this feature either because it hasn't been approved by our compliance, governance, or security areas. In our current setup, everyone from my business unit uses the same consumer account. When access is requested for a table, everyone using that business unit account receives access. This could present a security concern, though it benefits new team members who automatically receive all necessary access permissions. However, I struggle to identify specific improvements needed in AWS Lake Formation.
Luís Silva - PeerSpot reviewer
Chief Technical Lead at a consultancy with 201-500 employees
Handles large data sets efficiently and offers flexible data management capabilities
The features I find most valuable in this solution are the ability to run and handle large data sets in a very efficient way with multiple types of data, relational as SQL data. It is kind of difficult to explain, but structured data and the ability to handle large data sets are key features. The data integration capabilities in BigQuery were, in fact, an issue at the beginning. There are two types of integrations. As long as integration is within Google, it is pretty simple. When you start to try to connect external clients to that data, it becomes more complex. It is not related to BigQuery, it is related to Google security model, which is not easy to manage. I would not call it an integration issue of BigQuery, I would call it an integration issue of Google security model.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"AWS Lake Formation has several valuable features that enhance data management, and one particularly beneficial aspect is how it facilitates better collaboration within data teams."
"AWS Lake Formation significantly improves the structure of the data mesh, making it superior to previous structures we used."
"There is no doubt that this place exceeded my expectations with its incredible ambiance, attentive service, and mouthwatering menu."
"We have observed measurable benefits in terms of cost savings, time savings, resource savings, and efficiency improvements in our workflows."
"The LF-Tag system with granular permissions was key to the project as a functionality of AWS Lake Formation."
"The most important advantage in using AWS Lake Formation is its ability to connect the data lake to the other technologies in AWS. This is what I advise my clients."
"We use this to reduce latency from minutes to seconds, as we aim for real-time visibility into patient healthcare monitoring."
"The most valuable features of AWS Lake Formation were the access model itself, as it allows implementation of filters, Blueprints, and row-level and column-level security to mask data that shouldn't be accessed by certain entities, enabling granular control without exposing PII data."
"It stands out in efficiently handling internal actions without the need for manual intervention in tasks like building cubes and defining final dimensions."
"The product’s most valuable feature is its ability to manage the database on the cloud."
"This solution is highly scalable."
"BigQuery is a powerful tool for managing and analyzing large datasets. The versatility of BigQuery extends to its compatibility with external data visualization tools like Power BI and Tableau. This means you not only get query results but can also seamlessly integrate and visualize your data for better insights."
"The solution's reporting, dashboard, and out-of-the-box capabilities match exactly our requirements."
"The query tool is scalable and allows for petabytes of data."
"The main thing I like about BigQuery is storage. We did an on-premise BigQuery migration with trillions of records. Usually, we have to deal with insufficient storage on-premises, but in BigQuery, we don't get that because it's like cloud storage, and we can have any number of records. That is one advantage. The next major advantage is the column length. We have some limits on column length on-premises, like 10,000, and we have to design it based on that. However, with BigQuery, we don't need to design the column length at all. It will expand or shrink based on the records it's getting. I can give you a real-life example based on our migration from on-premises to GCP. There was a dimension table with a general number of records, and when we queried that on-premises, like in Apache Spark or Teradata, it took around half an hour to get those records. In BigQuery, it was instant. As it's very fast, you can get it in two or three minutes. That was very helpful for our engineers. Usually, we have to run a query on-premises and go for a break while waiting for that query to give us the results. It's not the case with BigQuery because it instantly provides results when we run it. So, that makes the work fast, it helps a lot, and it helps save a lot of time. It also has a reasonable performance rate and smart tuning. Suppose we need to perform some joins, BigQuery has a smart tuning option, and it'll tune itself and tell us the best way a query can be done in the backend. To be frank, the performance, reliability, and everything else have improved, even the downtime. Usually, on-premise servers have some downtime, but as BigQuery is multiregional, we have storage in three different locations. So, downtime is also not getting impacted. For example, if the Atlantic ocean location has some downtime, or the server is down, we can use data that is stored in Africa or somewhere else. We have three or four storage locations, and that's the main advantage."
"The best features of BigQuery for me are the fact that it's low-code, no-code; you don't have to be a data scientist to really utilize the tool."
 

Cons

"Lake Formation could enhance its capabilities in audit logs, real-time monitoring, and advanced data governance."
"Athena can be a bit clunky when writing queries, indicating a potential enhancement point for easier user interaction with query tools such as DataGrip using provided driver JARs."
"I haven't seen any measurable benefits from using AWS Lake Formation, such as time saving, resource saving, or efficiency improvements."
"The initial onboarding process is challenging because creating a plan takes a month to a month and a half to build out."
"It falls short when it comes to more granular access control, such as cell-level or row-level entitlements which is a significant drawback for organizations that require precise control over who can access specific rows of data."
"I would appreciate online support, which I don't have access to in my corporation at the bank, so that is important."
"The solution could make improvements around orchestration and doing some automation stuff on AWS front automation. It would be useful if we could use automation to build images and use hardened images which are CIS compliant."
"The main challenge we faced with AWS Lake Formation was related to cross-account sharing. Granting access to other AWS accounts for tables or databases in a different AWS account was somewhat difficult."
"Some of the queries are complex and difficult to understand."
"So our challenge in Yemen is convincing many people to go to cloud services."
"The initial setup could be improved making it easier to deploy."
"I understand that Snowflake has made some improvements on its end to further reduce costs, so I believe BigQuery can catch up."
"BigQuery can be very expensive if not used properly. Introducing AI tools that would allow you to optimize the data extraction process is an area of serious improvement."
"An area for improvement in BigQuery is its UI because it's not working very well. Pricing for the solution is also very high."
"I would like to see version-based implementation and a fallback arrangement for data stored in BigQuery storage. These are some features I'm interested in."
"It would be helpful if they could provide some dashboards where you can easily view charts and information."
 

Pricing and Cost Advice

"AWS Lake Formation is a bit expensive."
"Price-wise, I think that is very reasonable."
"BigQuery is inexpensive."
"The price could be better. Usually, you need to buy the license for a year. Whenever you want more, you can subscribe to it, and you can use it. Otherwise, you can terminate the license. You can use it daily or monthly, and we use it based on a project's requirements."
"We are above the free threshold, so we are paying around 40 euros per month for BigQuery."
"1 TB is free of cost monthly. If you use more than 1 TB a month, then you need to pay 5 dollars extra for each TB."
"The product’s pricing could be more flexible for end users."
"The pricing is adaptable, ensuring that organizations can tailor their usage and costs based on their specific requirements and configurations within the Google Cloud Platform."
"Its cost structure operates on a pay-as-you-go model."
report
Use our free recommendation engine to learn which Cloud Data Warehouse solutions are best for your needs.
881,082 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
22%
Computer Software Company
9%
Manufacturing Company
7%
Retailer
6%
Financial Services Firm
15%
Computer Software Company
13%
Manufacturing Company
13%
Retailer
7%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business3
Midsize Enterprise2
Large Enterprise15
By reviewers
Company SizeCount
Small Business12
Midsize Enterprise9
Large Enterprise20
 

Questions from the Community

What is your experience regarding pricing and costs for AWS Lake Formation?
I don't understand much about the pricing of AWS Lake Formation, but I know how to search for the cost of Glue jobs, and I use the calculator in Amazon. I use a tool to preview the cost based on th...
What needs improvement with AWS Lake Formation?
Regarding areas of AWS Lake Formation that could be improved or enhanced, I prefer not to answer, mainly because I do not believe that I would be the most valuable person to ask, as I have not used...
What is your primary use case for AWS Lake Formation?
My usual use cases for AWS Lake Formation involved securing and governing the data resources that we configured in AWS, but we did not use the analytics or machine learning capabilities specificall...
What do you like most about BigQuery?
The initial setup process is easy.
What is your experience regarding pricing and costs for BigQuery?
I believe the cost of BigQuery is competitive versus the alternatives in the market, but it can become expensive if the tool is not used properly. It is on a per-consumption basis, the billing, so ...
What needs improvement with BigQuery?
There are areas that could be improved with BigQuery, such as more bolt-on capabilities and the ability to use more bolt-ons for APIs. Having more of a library of connectors would be really benefic...
 

Overview

 

Sample Customers

bp, Cerner, Expedia, Finra, HESS, intuit, Kellog's, Philips, TIME, workday
Information Not Available
Find out what your peers are saying about AWS Lake Formation vs. BigQuery and other solutions. Updated: December 2025.
881,082 professionals have used our research since 2012.