Try our new research platform with insights from 80,000+ expert users

Apache Kafka vs Spring Cloud Data Flow comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 17, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Kafka
Ranking in Streaming Analytics
7th
Average Rating
8.2
Reviews Sentiment
6.8
Number of Reviews
90
Ranking in other categories
No ranking in other categories
Spring Cloud Data Flow
Ranking in Streaming Analytics
11th
Average Rating
7.8
Reviews Sentiment
6.8
Number of Reviews
9
Ranking in other categories
Data Integration (20th)
 

Mindshare comparison

As of January 2026, in the Streaming Analytics category, the mindshare of Apache Kafka is 3.8%, up from 2.2% compared to the previous year. The mindshare of Spring Cloud Data Flow is 4.1%, down from 4.9% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics Market Share Distribution
ProductMarket Share (%)
Apache Kafka3.8%
Spring Cloud Data Flow4.1%
Other92.1%
Streaming Analytics
 

Featured Reviews

Bruno da Silva - PeerSpot reviewer
Senior Manager at Timestamp, SA
Have worked closely with the team to deploy streaming and transaction pipelines in a flexible cloud environment
The interface of Apache Kafka could be significantly better. I started working with Apache Kafka from its early days, and I have seen many improvements. The back office functionality could be enhanced. Scaling up continues to be a challenge, though it is much easier now than it was in the beginning.
LN
Senior Software Engineer at QBE Regional Insurance
Provides ease of integration with other cloud platforms
Spring Cloud Data Flow is a useful product if I consider how there are different providers with whom my company had to deal, and most of them offer cloud-based products. I can't explain any crucial circumstances where the product's integration capabilities were helpful, but the aforementioned details explain the scenario for which I used the solution. I was only involved with the development of the product and not with the data pipeline configuration phase. The use of Spring Cloud Data Flow greatly impacted projects' time to market since our company's intention was to actually deploy and ensure that the payment platform integrated with it, which was an easy process. The product's user interface was very intuitive. The tool was deployed in multiple environments, but I am not sure about the production. From the time I started taking up the job in my current organization, I saw that we have deployed the tool in multiple environments wherein the number of users extensively used the product in the UAT environment, which is one of the most stable environments. There were 20 different methods to test the tool. I wouldn't be able to tell you the production details of the tool as I was more part of the production deployment, but I can say that it was deployed with the intent of making it available for 10,000 users. Those who plan to use the product should enjoy the flexibility of the solution. I rate the tool a nine out of ten.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Robust and delivers messages quickly."
"The most valuable feature is that it can handle high volume."
"I appreciate that Apache Kafka is fast and secure thanks to implementing it with AWS, allowing me to secure it on a high level."
"Resiliency is great and also the fact that it handles different data formats."
"Apache Kafka is actually a distributed commit log. That is different than most messaging and queuing systems before it."
"We get amazing throughput. We don't get any delay."
"It is a stable solution...A lot of my experience indicates that Apache Kafka is scalable."
"I use it for real-time processing workloads. So, in some instances, it's like IoT data. We need to put it into a data lake."
"The most valuable features of Spring Cloud Data Flow are the simple programming model, integration, dependency Injection, and ability to do any injection. Additionally, auto-configuration is another important feature because we don't have to configure the database and or set up the boilerplate in the database in every project. The composability is good, we can create small workloads and compose them in any way we like."
"The most valuable feature is real-time streaming."
"There are a lot of options in Spring Cloud. It's flexible in terms of how we can use it. It's a full infrastructure."
"The solution's most valuable feature is that it allows us to use different batch data sources, retrieve the data, and then do the data processing, after which we can convert and store it in the target."
"The best thing I like about Spring Cloud Data Flow is its plug-and-play model."
"The dashboards in Spring Cloud Dataflow are quite valuable."
"The ease of deployment on Kubernetes, the seamless integration for orchestration of various pipelines, and the visual dashboard that simplifies operations even for non-specialists such as quality analysts."
"The product is very user-friendly."
 

Cons

"I would like to see an improvement in authentication management."
"The solution's initial setup process was complex."
"Confluent has improved aspects like documentation and cloud support, yet Kafka's reliance on older architectures like ZooKeeper in previous versions is a limitation."
"Apache Kafka can improve by providing a UI for monitoring. There are third-party tools that can do it, but it would be nice if it was already embedded within Apache Kafka."
"Pulsar gives more scalability to an even grouping, but Apache Kafka is used more if you want to send something in a time series-based. If this does not matter to you then Pulsar could be more customizable. Apache Kafka is nothing but a streaming system with local storage."
"The repository isn't working very well. It's not user friendly."
"The price for the enterprise version is quite high. It would be better to have a lower price."
"The ability to connect the producers and consumers must be improved."
"Some of the features, like the monitoring tools, are not very mature and are still evolving."
"The solution's community support could be improved."
"There were instances of deployment pipelines getting stuck, and the dashboard not always accurately showing the application status, requiring manual intervention such as rerunning applications or refreshing the dashboard."
"I would improve the dashboard features as they are not very user-friendly."
"Spring Cloud Data Flow is not an easy-to-use tool, so improvements are required."
"On the tool's online discussion forums, you may get stuck with an issue, making it an area where improvements are required."
"Spring Cloud Data Flow could improve the user interface. We can drag and drop in the application for the configuration and settings, and deploy it right from the UI, without having to run a CI/CD pipeline. However, that does not work with Kubernetes, it only works when we are working with jars as the Spring Cloud Data Flow applications."
"The configurations could be better. Some configurations are a little bit time-consuming in terms of trying to understand using the Spring Cloud documentation."
 

Pricing and Cost Advice

"Apache Kafka is open-source and can be used free of charge."
"Apache Kafka is free."
"The price of the solution is low."
"The solution is open source."
"This is an open-source solution and is free to use."
"It's quite affordable considering the value it provides."
"The price of Apache Kafka is good."
"Apache Kafka has an open-source pricing."
"This is an open-source product that can be used free of charge."
"The solution provides value for money, and we are currently using its community edition."
"If you want support from Spring Cloud Data Flow there is a fee. The Spring Framework is open-source and this is a free solution."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
881,082 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
22%
Computer Software Company
11%
Manufacturing Company
9%
Retailer
5%
Financial Services Firm
20%
Computer Software Company
13%
Retailer
9%
Government
5%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business32
Midsize Enterprise18
Large Enterprise49
By reviewers
Company SizeCount
Small Business3
Midsize Enterprise1
Large Enterprise5
 

Questions from the Community

What are the differences between Apache Kafka and IBM MQ?
Apache Kafka is open source and can be used for free. It has very good log management and has a way to store the data used for analytics. Apache Kafka is very good if you have a high number of user...
What do you like most about Apache Kafka?
Apache Kafka is an open-source solution that can be used for messaging or event processing.
What is your experience regarding pricing and costs for Apache Kafka?
Its pricing is reasonable. It's not always about cost, but about meeting specific needs.
What needs improvement with Spring Cloud Data Flow?
There were instances of deployment pipelines getting stuck, and the dashboard not always accurately showing the application status, requiring manual intervention such as rerunning applications or r...
What is your primary use case for Spring Cloud Data Flow?
We had a project for content management, which involved multiple applications each handling content ingestion, transformation, enrichment, and storage for different customers independently. We want...
What advice do you have for others considering Spring Cloud Data Flow?
I would definitely recommend Spring Cloud Data Flow. It requires minimal additional effort or time to understand how it works, and even non-specialists can use it effectively with its friendly docu...
 

Overview

 

Sample Customers

Uber, Netflix, Activision, Spotify, Slack, Pinterest
Information Not Available
Find out what your peers are saying about Apache Kafka vs. Spring Cloud Data Flow and other solutions. Updated: December 2025.
881,082 professionals have used our research since 2012.