Try our new research platform with insights from 80,000+ expert users

Apache Kafka vs Spring Cloud Data Flow comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 17, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Kafka
Ranking in Streaming Analytics
7th
Average Rating
8.2
Reviews Sentiment
6.8
Number of Reviews
90
Ranking in other categories
No ranking in other categories
Spring Cloud Data Flow
Ranking in Streaming Analytics
11th
Average Rating
7.8
Reviews Sentiment
6.8
Number of Reviews
9
Ranking in other categories
Data Integration (20th)
 

Mindshare comparison

As of February 2026, in the Streaming Analytics category, the mindshare of Apache Kafka is 4.0%, up from 2.3% compared to the previous year. The mindshare of Spring Cloud Data Flow is 3.8%, down from 4.9% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics Market Share Distribution
ProductMarket Share (%)
Apache Kafka4.0%
Spring Cloud Data Flow3.8%
Other92.2%
Streaming Analytics
 

Featured Reviews

Bruno da Silva - PeerSpot reviewer
Senior Manager at Timestamp, SA
Have worked closely with the team to deploy streaming and transaction pipelines in a flexible cloud environment
The interface of Apache Kafka could be significantly better. I started working with Apache Kafka from its early days, and I have seen many improvements. The back office functionality could be enhanced. Scaling up continues to be a challenge, though it is much easier now than it was in the beginning.
LN
Senior Software Engineer at QBE Regional Insurance
Provides ease of integration with other cloud platforms
Spring Cloud Data Flow is a useful product if I consider how there are different providers with whom my company had to deal, and most of them offer cloud-based products. I can't explain any crucial circumstances where the product's integration capabilities were helpful, but the aforementioned details explain the scenario for which I used the solution. I was only involved with the development of the product and not with the data pipeline configuration phase. The use of Spring Cloud Data Flow greatly impacted projects' time to market since our company's intention was to actually deploy and ensure that the payment platform integrated with it, which was an easy process. The product's user interface was very intuitive. The tool was deployed in multiple environments, but I am not sure about the production. From the time I started taking up the job in my current organization, I saw that we have deployed the tool in multiple environments wherein the number of users extensively used the product in the UAT environment, which is one of the most stable environments. There were 20 different methods to test the tool. I wouldn't be able to tell you the production details of the tool as I was more part of the production deployment, but I can say that it was deployed with the intent of making it available for 10,000 users. Those who plan to use the product should enjoy the flexibility of the solution. I rate the tool a nine out of ten.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Its availability is brilliant."
"Kafka makes data streaming asynchronous and decouples the reliance of events on consumers."
"The convenience in setting up after major problems like data center blackouts is a notable feature."
"Kafka provides us with a way to store the data used for analytics. That's the big selling point. There's very good log management."
"Resiliency is great and also the fact that it handles different data formats."
"It is the performance that is really meaningful."
"For example, when you want to send a message to inform all your clients about a new feature, you can publish that message to a single topic in Apache Kafka. This allows all clients subscribed to that topic to receive the message. On the other hand, if you need to send billing information to a specific customer, you can publish that message on a topic dedicated to that customer. This message can then be sent as an SMS to the customer, allowing them to view it on their mobile device."
"It eases our current data flow and framework."
"The ease of deployment on Kubernetes, the seamless integration for orchestration of various pipelines, and the visual dashboard that simplifies operations even for non-specialists such as quality analysts."
"The solution's most valuable feature is that it allows us to use different batch data sources, retrieve the data, and then do the data processing, after which we can convert and store it in the target."
"The best thing I like about Spring Cloud Data Flow is its plug-and-play model."
"The product is very user-friendly."
"The most valuable feature is real-time streaming."
"There are a lot of options in Spring Cloud. It's flexible in terms of how we can use it. It's a full infrastructure."
"The most valuable features of Spring Cloud Data Flow are the simple programming model, integration, dependency Injection, and ability to do any injection. Additionally, auto-configuration is another important feature because we don't have to configure the database and or set up the boilerplate in the database in every project. The composability is good, we can create small workloads and compose them in any way we like."
"The dashboards in Spring Cloud Dataflow are quite valuable."
 

Cons

"would like to see real-time event-based consumption of messages rather than the traditional way through a loop. The traditional messaging system works by listing and looping with a small wait to check to see what the messages are. A push system is where you have something that is ready to receive a message and when the message comes in and hits the partition, it goes straight to the consumer versus the consumer having to pull. I believe this consumer approach is something they are working on and may come in an upcoming release. However, that is message consumption versus message listening."
"Scalability may cause issues in the product if my nodes are full with multiple sources and delivery is slowing down."
"One complexity that I faced with the tool stems from the fact that since it is not kind of a stand-alone application, it won't integrate with native cloud, like AWS or Azure."
"Config management can be better."
"The manageability should be improved. There are lots of things we need to manage and it should have a function that enables us to manage them all cohesively."
"In Apache Kafka, it is currently difficult to create a consumer."
"Stability of the API and the technical support could be improved."
"The third party is not very stable and sometimes you have problems with this component. There are some developments in newer versions and we're about to try them out, but I'm not sure if it closes the gap."
"There were instances of deployment pipelines getting stuck, and the dashboard not always accurately showing the application status, requiring manual intervention such as rerunning applications or refreshing the dashboard."
"Spring Cloud Data Flow could improve the user interface. We can drag and drop in the application for the configuration and settings, and deploy it right from the UI, without having to run a CI/CD pipeline. However, that does not work with Kubernetes, it only works when we are working with jars as the Spring Cloud Data Flow applications."
"The configurations could be better. Some configurations are a little bit time-consuming in terms of trying to understand using the Spring Cloud documentation."
"Some of the features, like the monitoring tools, are not very mature and are still evolving."
"On the tool's online discussion forums, you may get stuck with an issue, making it an area where improvements are required."
"I would improve the dashboard features as they are not very user-friendly."
"Spring Cloud Data Flow is not an easy-to-use tool, so improvements are required."
"The solution's community support could be improved."
 

Pricing and Cost Advice

"It is approximately $600,000 USD."
"Kafka is an open-source solution, so there are no licensing costs."
"Apache Kafka is an open-sourced solution. There are fees if you want the support, and I would recommend it for enterprises. There are annual subscriptions available."
"This is an open-source solution and is free to use."
"Apache Kafka is an open-source solution."
"This is an open-source version."
"Kafka is more reasonably priced than IBM MQ."
"We are using the free version of Apache Kafka."
"The solution provides value for money, and we are currently using its community edition."
"This is an open-source product that can be used free of charge."
"If you want support from Spring Cloud Data Flow there is a fee. The Spring Framework is open-source and this is a free solution."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
881,707 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
20%
Computer Software Company
11%
Manufacturing Company
9%
Retailer
5%
Financial Services Firm
20%
Computer Software Company
12%
Retailer
8%
Healthcare Company
5%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business32
Midsize Enterprise18
Large Enterprise49
By reviewers
Company SizeCount
Small Business3
Midsize Enterprise1
Large Enterprise5
 

Questions from the Community

What are the differences between Apache Kafka and IBM MQ?
Apache Kafka is open source and can be used for free. It has very good log management and has a way to store the data used for analytics. Apache Kafka is very good if you have a high number of user...
What is your experience regarding pricing and costs for Apache Kafka?
Its pricing is reasonable. It's not always about cost, but about meeting specific needs.
What needs improvement with Apache Kafka?
The long-term data storage feature in Apache Kafka depends on the setting, but I believe the maximum duration is seven days.
What needs improvement with Spring Cloud Data Flow?
There were instances of deployment pipelines getting stuck, and the dashboard not always accurately showing the application status, requiring manual intervention such as rerunning applications or r...
What is your primary use case for Spring Cloud Data Flow?
We had a project for content management, which involved multiple applications each handling content ingestion, transformation, enrichment, and storage for different customers independently. We want...
What advice do you have for others considering Spring Cloud Data Flow?
I would definitely recommend Spring Cloud Data Flow. It requires minimal additional effort or time to understand how it works, and even non-specialists can use it effectively with its friendly docu...
 

Overview

 

Sample Customers

Uber, Netflix, Activision, Spotify, Slack, Pinterest
Information Not Available
Find out what your peers are saying about Apache Kafka vs. Spring Cloud Data Flow and other solutions. Updated: December 2025.
881,707 professionals have used our research since 2012.