Try our new research platform with insights from 80,000+ expert users

Apache Spark vs QueryIO comparison

 

Comparison Buyer's Guide

Executive Summary

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Spark
Ranking in Hadoop
2nd
Average Rating
8.4
Reviews Sentiment
6.9
Number of Reviews
67
Ranking in other categories
Compute Service (4th), Java Frameworks (2nd)
QueryIO
Ranking in Hadoop
11th
Average Rating
8.0
Number of Reviews
1
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of October 2025, in the Hadoop category, the mindshare of Apache Spark is 19.0%, up from 18.7% compared to the previous year. The mindshare of QueryIO is 1.1%, up from 0.9% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Hadoop Market Share Distribution
ProductMarket Share (%)
Apache Spark19.0%
QueryIO1.1%
Other79.9%
Hadoop
 

Featured Reviews

Omar Khaled - PeerSpot reviewer
Empowering data consolidation and fast decision-making with efficient big data processing
I can improve the organization's functions by taking less time to make decisions. To make the right decision, you need the right data, and a solution can provide this by hiring talent and employees who can consolidate data from different sources and organize it. Not all solutions can make this data fast enough to be used, except for solutions such as Apache Spark Structured Streaming. To make the right decision, you should have both accurate and fast data. Apache Spark itself is similar to the Python programming language. Python is a language with many libraries for mathematics and machine learning. Apache Spark is the solution, and within it, you have PySpark, which is the API for Apache Spark to write and run Python code. Within it, there are many APIs, including SQL APIs, allowing you to write SQL code within a Python function in Apache Spark. You can also use Apache Spark Structured Streaming and machine learning APIs.
MR
Stable with good connectivity and good integration capabilities
Data cleansing is not intuitive and user-friendly. When things have errors, you have to hunt them down as opposed to the solution simply showing you intuitively where to find it. I would recommend that they look at that Tableau Prep tool and see how it is pieced together. That's a great data cleansing tool. If Microsoft has something like that, then we wouldn't even have to look at some of the other options. There needs to be some simplification of the user interface. Right now it's too complicated. There isn't a way to put controls on the solution, so anyone can use any part of it, and sometimes novices will go and try to create things, but not know enough about what is official and what is published. It would be ideal if we could segment off certain sections so that not everyone had access to the whole solution. I'd like to see something more of a mapping tool so that you could see how the reports are connected, similar to Tableau Prep and Naim. That would make for a pretty useful diagnostics check. People would be better able to understand the linkage between your datasets. It would be nice if the solution offered some templates. It would make it even more plug and play, and give people a good jumping-off point. After that, they could explore other bells and whistles as they get further into understanding the solution. The solution should work in some virtualization. It would be a good added feature. If this product had those things then I wouldn't need to use other products.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The solution is scalable."
"Its scalability and speed are very valuable. You can scale it a lot. It is a great technology for big data. It is definitely better than a lot of earlier warehouse or pipeline solutions, such as Informatica. Spark SQL is very compliant with normal SQL that we have been using over the years. This makes it easy to code in Spark. It is just like using normal SQL. You can use the APIs of Spark or you can directly write SQL code and run it. This is something that I feel is useful in Spark."
"I like that it can handle multiple tasks parallelly. I also like the automation feature. JavaScript also helps with the parallel streaming of the library."
"I appreciate everything about the solution, not just one or two specific features. The solution is highly stable. I rate it a perfect ten. The solution is highly scalable. I rate it a perfect ten. The initial setup was straightforward. I recommend using the solution. Overall, I rate the solution a perfect ten."
"We use Spark to process data from different data sources."
"Apache Spark provides a very high-quality implementation of distributed data processing."
"The product's deployment phase is easy."
"Spark can handle small to huge data and is suitable for any size of company."
"Anyone who has even a little bit of knowledge of the solution can begin to create things. You don't have to be technical to use the solution."
 

Cons

"The basic improvement would be to have integration with these solutions."
"The solution must improve its performance."
"Spark could be improved by adding support for other open-source storage layers than Delta Lake."
"It requires overcoming a significant learning curve due to its robust and feature-rich nature."
"It would be beneficial to enhance Spark's capabilities by incorporating models that utilize features not traditionally present in its framework."
"We've had problems using a Python process to try to access something in a large volume of data. It crashes if somebody gives me the wrong code because it cannot handle a large volume of data."
"Stability in terms of API (things were difficult, when transitioning from RDD to DataFrames, then to DataSet)."
"More ML based algorithms should be added to it, to make it algorithmic-rich for developers."
"There needs to be some simplification of the user interface."
 

Pricing and Cost Advice

"I did not pay anything when using the tool on cloud services, but I had to pay on the compute side. The tool is not expensive compared with the benefits it offers. I rate the price as an eight out of ten."
"It is an open-source solution, it is free of charge."
"Apache Spark is open-source. You have to pay only when you use any bundled product, such as Cloudera."
"Apache Spark is an expensive solution."
"Apache Spark is not too cheap. You have to pay for hardware and Cloudera licenses. Of course, there is a solution with open source without Cloudera."
"We are using the free version of the solution."
"It is quite expensive. In fact, it accounts for almost 50% of the cost of our entire project."
"The solution is affordable and there are no additional licensing costs."
Information not available
report
Use our free recommendation engine to learn which Hadoop solutions are best for your needs.
868,759 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
26%
Computer Software Company
11%
Manufacturing Company
7%
Comms Service Provider
7%
No data available
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business27
Midsize Enterprise15
Large Enterprise32
No data available
 

Questions from the Community

What do you like most about Apache Spark?
We use Spark to process data from different data sources.
What is your experience regarding pricing and costs for Apache Spark?
Apache Spark is open-source, so it doesn't incur any charges.
What needs improvement with Apache Spark?
Regarding Apache Spark, I have only used Apache Spark Structured Streaming, not the machine learning components. I am uncertain about specific improvements needed today. However, after five years, ...
Ask a question
Earn 20 points
 

Comparisons

No data available
 

Overview

 

Sample Customers

NASA JPL, UC Berkeley AMPLab, Amazon, eBay, Yahoo!, UC Santa Cruz, TripAdvisor, Taboola, Agile Lab, Art.com, Baidu, Alibaba Taobao, EURECOM, Hitachi Solutions
Information Not Available
Find out what your peers are saying about Cloudera, Apache, Amazon Web Services (AWS) and others in Hadoop. Updated: September 2025.
868,759 professionals have used our research since 2012.