Try our new research platform with insights from 80,000+ expert users

Apache Spark vs QueryIO comparison

 

Comparison Buyer's Guide

Executive Summary

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Spark
Ranking in Hadoop
1st
Average Rating
8.4
Reviews Sentiment
7.3
Number of Reviews
67
Ranking in other categories
Compute Service (4th), Java Frameworks (2nd)
QueryIO
Ranking in Hadoop
13th
Average Rating
8.0
Number of Reviews
1
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of August 2025, in the Hadoop category, the mindshare of Apache Spark is 19.2%, down from 20.2% compared to the previous year. The mindshare of QueryIO is 0.7%, down from 0.8% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Hadoop
 

Featured Reviews

Omar Khaled - PeerSpot reviewer
Empowering data consolidation and fast decision-making with efficient big data processing
I can improve the organization's functions by taking less time to make decisions. To make the right decision, you need the right data, and a solution can provide this by hiring talent and employees who can consolidate data from different sources and organize it. Not all solutions can make this data fast enough to be used, except for solutions such as Apache Spark Structured Streaming. To make the right decision, you should have both accurate and fast data. Apache Spark itself is similar to the Python programming language. Python is a language with many libraries for mathematics and machine learning. Apache Spark is the solution, and within it, you have PySpark, which is the API for Apache Spark to write and run Python code. Within it, there are many APIs, including SQL APIs, allowing you to write SQL code within a Python function in Apache Spark. You can also use Apache Spark Structured Streaming and machine learning APIs.
MR
Stable with good connectivity and good integration capabilities
Data cleansing is not intuitive and user-friendly. When things have errors, you have to hunt them down as opposed to the solution simply showing you intuitively where to find it. I would recommend that they look at that Tableau Prep tool and see how it is pieced together. That's a great data cleansing tool. If Microsoft has something like that, then we wouldn't even have to look at some of the other options. There needs to be some simplification of the user interface. Right now it's too complicated. There isn't a way to put controls on the solution, so anyone can use any part of it, and sometimes novices will go and try to create things, but not know enough about what is official and what is published. It would be ideal if we could segment off certain sections so that not everyone had access to the whole solution. I'd like to see something more of a mapping tool so that you could see how the reports are connected, similar to Tableau Prep and Naim. That would make for a pretty useful diagnostics check. People would be better able to understand the linkage between your datasets. It would be nice if the solution offered some templates. It would make it even more plug and play, and give people a good jumping-off point. After that, they could explore other bells and whistles as they get further into understanding the solution. The solution should work in some virtualization. It would be a good added feature. If this product had those things then I wouldn't need to use other products.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The features we find most valuable are the machine learning, data learning, and Spark Analytics."
"With Hadoop-related technologies, we can distribute the workload with multiple commodity hardware."
"The product's deployment phase is easy."
"One of Apache Spark's most valuable features is that it supports in-memory processing, the execution of jobs compared to traditional tools is very fast."
"The most valuable feature of Apache Spark is its flexibility."
"Now, when we're tackling sentiment analysis using NLP technologies, we deal with unstructured data—customer chats, feedback on promotions or demos, and even media like images, audio, and video files. For processing such data, we rely on PySpark. Beneath the surface, Spark functions as a compute engine with in-memory processing capabilities, enhancing performance through features like broadcasting and caching. It's become a crucial tool, widely adopted by 90% of companies for a decade or more."
"Its scalability and speed are very valuable. You can scale it a lot. It is a great technology for big data. It is definitely better than a lot of earlier warehouse or pipeline solutions, such as Informatica. Spark SQL is very compliant with normal SQL that we have been using over the years. This makes it easy to code in Spark. It is just like using normal SQL. You can use the APIs of Spark or you can directly write SQL code and run it. This is something that I feel is useful in Spark."
"ETL and streaming capabilities."
"Anyone who has even a little bit of knowledge of the solution can begin to create things. You don't have to be technical to use the solution."
 

Cons

"At the initial stage, the product provides no container logs to check the activity."
"Include more machine learning algorithms and the ability to handle streaming of data versus micro batch processing."
"The Spark solution could improve in scheduling tasks and managing dependencies."
"I know there is always discussion about which language to write applications in and some people do love Scala. However, I don't like it."
"The graphical user interface (UI) could be a bit more clear. It's very hard to figure out the execution logs and understand how long it takes to send everything. If an execution is lost, it's not so easy to understand why or where it went. I have to manually drill down on the data processes which takes a lot of time. Maybe there could be like a metrics monitor, or maybe the whole log analysis could be improved to make it easier to understand and navigate."
"Apache Spark should add some resource management improvements to the algorithms."
"From my perspective, the only thing that needs improvement is the interface, as it was not easily understandable."
"Apache Spark lacks geospatial data."
"There needs to be some simplification of the user interface."
 

Pricing and Cost Advice

"On the cloud model can be expensive as it requires substantial resources for implementation, covering on-premises hardware, memory, and licensing."
"The product is expensive, considering the setup."
"Apache Spark is an open-source tool."
"Considering the product version used in my company, I feel that the tool is not costly since the product is available for free."
"Apache Spark is open-source. You have to pay only when you use any bundled product, such as Cloudera."
"Spark is an open-source solution, so there are no licensing costs."
"It is an open-source platform. We do not pay for its subscription."
"The solution is affordable and there are no additional licensing costs."
Information not available
report
Use our free recommendation engine to learn which Hadoop solutions are best for your needs.
865,295 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
26%
Computer Software Company
10%
Manufacturing Company
7%
Comms Service Provider
7%
No data available
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

What do you like most about Apache Spark?
We use Spark to process data from different data sources.
What is your experience regarding pricing and costs for Apache Spark?
Apache Spark is open-source, so it doesn't incur any charges.
What needs improvement with Apache Spark?
There is complexity when it comes to understanding the whole ecosystem, especially for beginners. I find it quite complex to understand how a Spark job is initiated, the roles of driver nodes, work...
Ask a question
Earn 20 points
 

Comparisons

No data available
 

Overview

 

Sample Customers

NASA JPL, UC Berkeley AMPLab, Amazon, eBay, Yahoo!, UC Santa Cruz, TripAdvisor, Taboola, Agile Lab, Art.com, Baidu, Alibaba Taobao, EURECOM, Hitachi Solutions
Information Not Available
Find out what your peers are saying about Apache, Cloudera, Amazon Web Services (AWS) and others in Hadoop. Updated: August 2025.
865,295 professionals have used our research since 2012.