Try our new research platform with insights from 80,000+ expert users

Apache NiFi vs Apache Spark comparison

 

Comparison Buyer's Guide

Executive Summary

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache NiFi
Ranking in Compute Service
8th
Average Rating
7.8
Number of Reviews
13
Ranking in other categories
No ranking in other categories
Apache Spark
Ranking in Compute Service
4th
Average Rating
8.4
Reviews Sentiment
7.7
Number of Reviews
65
Ranking in other categories
Hadoop (1st), Java Frameworks (2nd)
 

Mindshare comparison

As of April 2025, in the Compute Service category, the mindshare of Apache NiFi is 8.0%, up from 7.1% compared to the previous year. The mindshare of Apache Spark is 11.2%, up from 9.7% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Compute Service
 

Featured Reviews

Bharghava Raghavendra Beesa - PeerSpot reviewer
The tool enables effective data transformation and integration
There are some areas for improvement, particularly with record-level tasks that take a bit of time. The quality of JSON data processing could be improved, as JSON workloads require manual conversions without a specific process. Enhancing features related to alerting would be helpful, including mobile alerts for pipeline issues. Integration with mobile devices for error alerts would simplify information delivery.
Ilya Afanasyev - PeerSpot reviewer
Reliable, able to expand, and handle large amounts of data well
We use batch processing. It works well with our formats and file versions. There's a lot of functionality. In our pipeline each hour, we make a copy of data from MongoDB, of the changes from MongoDB to some specific file. Each time pipeline copied all of the data, it would do it each time without changes to all of the tables. Tables have a lot of data, and in the last MongoDB version, there is a possibility to read only changed data. This reduced the cost and configuration of the cluster, and we saved about $150,000. The solution is scalable. It's a stable product.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The user interface is good and makes it easy to design very popular workflows."
"The initial setup is very easy."
"Visually, this is a good product."
"Apache NiFi is user-friendly. Its most valuable features for handling large volumes of data include its multitude of integrated endpoints and clients and the ability to create cron jobs to run tasks at regular intervals."
"It's an automated flow, where you can build a flow from source to destination, then do the transformation in between."
"The most valuable features of this solution are ease of use and implementation."
"It is highly effective for handling real-time data by working with APIs for immediate and continuous data extraction."
"We can integrate the tool with other applications easily."
"The scalability has been the most valuable aspect of the solution."
"Apache Spark provides a very high-quality implementation of distributed data processing."
"Provides a lot of good documentation compared to other solutions."
"The product's initial setup phase was easy."
"I found the solution stable. We haven't had any problems with it."
"The most valuable feature is the Fault Tolerance and easy binding with other processes like Machine Learning, graph analytics."
"The distribution of tasks, like the seamless map-reduce functionality, is quite impressive."
"I like Apache Spark's flexibility the most. Before, we had one server that would choke up. With the solution, we can easily add more nodes when needed. The machine learning models are also really helpful. We use them to predict energy theft and find infrastructure problems."
 

Cons

"The tool should incorporate more tutorials for advanced use cases. It has tutorials for simple use cases."
"The overall stability of this solution could be improved. In a future release, we would like to have access to more features that could be used in a parallel way. This would provide more freedom with processing."
"The quality of JSON data processing could be improved, as JSON workloads require manual conversions without a specific process."
"There is room for improvement in integration with SSO. For example, NiFi does not have any integration with SSO. And if I want to give some kind of rollback access control across the organization. That is not possible."
"There should be a better way to integrate a development environment with local tools."
"We run many jobs, and there are already large tables. When we do not control NiFi on time, all reports fail for the day. So it's pretty slow to control, and it has to be improved."
"There are some claims that NiFi is cloud-native but we have tested it, and it's not."
"More features must be added to the product."
"I would like to see integration with data science platforms to optimize the processing capability for these tasks."
"Apache Spark could improve the connectors that it supports. There are a lot of open-source databases in the market. For example, cloud databases, such as Redshift, Snowflake, and Synapse. Apache Spark should have connectors present to connect to these databases. There are a lot of workarounds required to connect to those databases, but it should have inbuilt connectors."
"Its UI can be better. Maintaining the history server is a little cumbersome, and it should be improved. I had issues while looking at the historical tags, which sometimes created problems. You have to separately create a history server and run it. Such things can be made easier. Instead of separately installing the history server, it can be made a part of the whole setup so that whenever you set it up, it becomes available."
"More ML based algorithms should be added to it, to make it algorithmic-rich for developers."
"The graphical user interface (UI) could be a bit more clear. It's very hard to figure out the execution logs and understand how long it takes to send everything. If an execution is lost, it's not so easy to understand why or where it went. I have to manually drill down on the data processes which takes a lot of time. Maybe there could be like a metrics monitor, or maybe the whole log analysis could be improved to make it easier to understand and navigate."
"There could be enhancements in optimization techniques, as there are some limitations in this area that could be addressed to further refine Spark's performance."
"It needs a new interface and a better way to get some data. In terms of writing our scripts, some processes could be faster."
"One limitation is that not all machine learning libraries and models support it."
 

Pricing and Cost Advice

"It's an open-source solution."
"We use the free version of Apache NiFi."
"The solution is open-source."
"I used the tool's free version."
"Apache Spark is open-source. You have to pay only when you use any bundled product, such as Cloudera."
"Licensing costs can vary. For instance, when purchasing a virtual machine, you're asked if you want to take advantage of the hybrid benefit or if you prefer the license costs to be included upfront by the cloud service provider, such as Azure. If you choose the hybrid benefit, it indicates you already possess a license for the operating system and wish to avoid additional charges for that specific VM in Azure. This approach allows for a reduction in licensing costs, charging only for the service and associated resources."
"They provide an open-source license for the on-premise version."
"Apache Spark is an open-source solution, and there is no cost involved in deploying the solution on-premises."
"Since we are using the Apache Spark version, not the data bricks version, it is an Apache license version, the support and resolution of the bug are actually late or delayed. The Apache license is free."
"It is quite expensive. In fact, it accounts for almost 50% of the cost of our entire project."
"It is an open-source solution, it is free of charge."
"Spark is an open-source solution, so there are no licensing costs."
report
Use our free recommendation engine to learn which Compute Service solutions are best for your needs.
845,040 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
17%
Computer Software Company
14%
Manufacturing Company
9%
Retailer
7%
Financial Services Firm
28%
Computer Software Company
13%
Manufacturing Company
8%
Comms Service Provider
5%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What needs improvement with Apache NiFi?
There are some areas for improvement, particularly with record-level tasks that take a bit of time. The quality of JSON data processing could be improved, as JSON workloads require manual conversio...
What do you like most about Apache Spark?
We use Spark to process data from different data sources.
What is your experience regarding pricing and costs for Apache Spark?
Compared to other solutions like Doc DB, Spark is more costly due to the need for extensive infrastructure. It requires significant investment in infrastructure, which can be expensive. While cloud...
What needs improvement with Apache Spark?
The Spark solution could improve in scheduling tasks and managing dependencies. Spark alone cannot handle sequential tasks, requiring environments like Airflow scheduler or scripts. For instance, o...
 

Comparisons

 

Overview

 

Sample Customers

Macquarie Telecom Group, Dovestech, Slovak Telekom, Looker, Hastings Group
NASA JPL, UC Berkeley AMPLab, Amazon, eBay, Yahoo!, UC Santa Cruz, TripAdvisor, Taboola, Agile Lab, Art.com, Baidu, Alibaba Taobao, EURECOM, Hitachi Solutions
Find out what your peers are saying about Apache NiFi vs. Apache Spark and other solutions. Updated: March 2025.
845,040 professionals have used our research since 2012.