Try our new research platform with insights from 80,000+ expert users

Apache Spark vs Spark SQL comparison

 

Comparison Buyer's Guide

Executive Summary

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Spark
Ranking in Hadoop
1st
Average Rating
8.4
Reviews Sentiment
6.9
Number of Reviews
68
Ranking in other categories
Compute Service (5th), Java Frameworks (2nd)
Spark SQL
Ranking in Hadoop
5th
Average Rating
7.8
Reviews Sentiment
7.6
Number of Reviews
15
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of January 2026, in the Hadoop category, the mindshare of Apache Spark is 13.9%, down from 18.2% compared to the previous year. The mindshare of Spark SQL is 6.6%, down from 10.4% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Hadoop Market Share Distribution
ProductMarket Share (%)
Apache Spark13.9%
Spark SQL6.6%
Other79.5%
Hadoop
 

Featured Reviews

Devindra Weerasooriya - PeerSpot reviewer
Data Architect at Devtech
Provides a consistent framework for building data integration and access solutions with reliable performance
The in-memory computation feature is certainly helpful for my processing tasks. It is helpful because while using structures that could be held in memory rather than stored during the period of computation, I go for the in-memory option, though there are limitations related to holding it in memory that need to be addressed, but I have a preference for in-memory computation. The solution is beneficial in that it provides a base-level long-held understanding of the framework that is not variant day by day, which is very helpful in my prototyping activity as an architect trying to assess Apache Spark, Great Expectations, and Vault-based solutions versus those proposed by clients like TIBCO or Informatica.
Kemal Duman - PeerSpot reviewer
Team Lead, Data Engineering at Nesine.com
Data pipelines have run faster and support flexible batch and streaming transformations
We do not have any performance problems, but we do have some resource problems. Spark SQL consumes so many resources that we migrated our streaming job from Spark to Apache Flink. Resource management in Spark SQL should be better. It consumes more resources, which is normal. The main reason we switched from Spark is memory and CPU consumption. The major reason is the resource problem because the number of streaming jobs has been increasing in our company. That is why we considered resource management as a priority. Because of the resource consumption, I would say the development of Spark SQL is better. For development purposes, it is a top product and not difficult to work with, but resources are the major problem. We changed to Flink regardless of development time. Development time is less in Spark compared with Flink.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"There's a lot of functionality."
"The most valuable feature of Apache Spark is its flexibility."
"We use Spark to process data from different data sources."
"The solution has been very stable."
"The product’s most valuable features are lazy evaluation and workload distribution."
"The most valuable feature of Apache Spark is its memory processing because it processes data over RAM rather than disk, which is much more efficient and fast."
"The tool's most valuable feature is its speed and efficiency. It's much faster than other tools and excels in parallel data processing. Unlike tools like Python or JavaScript, which may struggle with parallel processing, it allows us to handle large volumes of data with more power easily."
"It is highly scalable, allowing you to efficiently work with extensive datasets that might be problematic to handle using traditional tools that are memory-constrained."
"One of Spark SQL's most beautiful features is running parallel queries to go through enormous data."
"Offers a variety of methods to design queries and incorporates the regular SQL syntax within tasks."
"Overall the solution is excellent."
"The speed of getting data."
"The performance is one of the most important features. It has an API to process the data in a functional manner."
"It is a stable solution."
"Spark SQL's efficiency in managing distributed data and its simplicity in expressing complex operations make it an essential part of our data pipeline."
"Data validation and ease of use are the most valuable features."
 

Cons

"The solution’s integration with other platforms should be improved."
"At the initial stage, the product provides no container logs to check the activity."
"Dynamic DataFrame options are not yet available."
"Spark could be improved by adding support for other open-source storage layers than Delta Lake."
"The product could improve the user interface and make it easier for new users."
"This solution currently cannot support or distribute neural network related models, or deep learning related algorithms. We would like this functionality to be developed."
"When you are working with large, complex tasks, the garbage collection process is slow and affects performance."
"We've had problems using a Python process to try to access something in a large volume of data. It crashes if somebody gives me the wrong code because it cannot handle a large volume of data."
"SparkUI could have more advanced versions of the performance and the queries and all."
"In the next update, we'd like to see better performance for small points of data. It is possible but there are better tools that are faster and cheaper."
"There should be better integration with other solutions."
"I've experienced some incompatibilities when using the Delta Lake format."
"Being a new user, I am not able to find out how to partition it correctly. I probably need more information or knowledge. In other database solutions, you can easily optimize all partitions. I haven't found a quicker way to do that in Spark SQL. It would be good if you don't need a partition here, and the system automatically partitions in the best way. They can also provide more educational resources for new users."
"Anything to improve the GUI would be helpful."
"It takes a bit of time to get used to using this solution versus Pandas as it has a steep learning curve."
"In the next release, maybe the visualization of some command-line features could be added."
 

Pricing and Cost Advice

"It is quite expensive. In fact, it accounts for almost 50% of the cost of our entire project."
"It is an open-source solution, it is free of charge."
"Since we are using the Apache Spark version, not the data bricks version, it is an Apache license version, the support and resolution of the bug are actually late or delayed. The Apache license is free."
"We are using the free version of the solution."
"The solution is affordable and there are no additional licensing costs."
"Spark is an open-source solution, so there are no licensing costs."
"Licensing costs can vary. For instance, when purchasing a virtual machine, you're asked if you want to take advantage of the hybrid benefit or if you prefer the license costs to be included upfront by the cloud service provider, such as Azure. If you choose the hybrid benefit, it indicates you already possess a license for the operating system and wish to avoid additional charges for that specific VM in Azure. This approach allows for a reduction in licensing costs, charging only for the service and associated resources."
"It is an open-source platform. We do not pay for its subscription."
"We don't have to pay for licenses with this solution because we are working in a small market, and we rely on open-source because the budgets of projects are very small."
"The solution is open-sourced and free."
"There is no license or subscription for this solution."
"The solution is bundled with Palantir Foundry at no extra charge."
"The on-premise solution is quite expensive in terms of hardware, setting up the cluster, memory, hardware and resources. It depends on the use case, but in our case with a shared cluster which is quite large, it is quite expensive."
"We use the open-source version, so we do not have direct support from Apache."
report
Use our free recommendation engine to learn which Hadoop solutions are best for your needs.
881,082 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
25%
Computer Software Company
9%
Manufacturing Company
7%
Comms Service Provider
6%
Financial Services Firm
16%
University
16%
Retailer
13%
Healthcare Company
8%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business28
Midsize Enterprise15
Large Enterprise32
By reviewers
Company SizeCount
Small Business5
Midsize Enterprise6
Large Enterprise4
 

Questions from the Community

What do you like most about Apache Spark?
We use Spark to process data from different data sources.
What is your experience regarding pricing and costs for Apache Spark?
Apache Spark is open-source, so it doesn't incur any charges.
What needs improvement with Apache Spark?
Areas for improvement are obviously ease of use considerations, though there are limitations in doing that, so while various tools like Informatica, TIBCO, or Talend offer specific aspects, licensi...
Ask a question
Earn 20 points
 

Comparisons

 

Overview

 

Sample Customers

NASA JPL, UC Berkeley AMPLab, Amazon, eBay, Yahoo!, UC Santa Cruz, TripAdvisor, Taboola, Agile Lab, Art.com, Baidu, Alibaba Taobao, EURECOM, Hitachi Solutions
UC Berkeley AMPLab, Amazon, Alibaba Taobao, Kenshoo, Hitachi Solutions
Find out what your peers are saying about Apache Spark vs. Spark SQL and other solutions. Updated: December 2025.
881,082 professionals have used our research since 2012.