

Elastic Search and Redis are widely used in data management and real-time applications. Elastic Search has an edge in analytics and search due to its integration capabilities and visualization tools, while Redis is advantageous in performance and real-time data processing.
Features: Elastic Search includes capabilities such as log monitoring, analytics, and visualization via Kibana. It supports various data types and integrates with tools like X-Pack, providing comprehensive insights. Redis is known for its speed and efficiency, offering fast read/write operations with an in-memory data store. Its features include caching, a range of data structures, and real-time messaging capabilities.
Room for Improvement: Elastic Search could enhance security, scalability, and its user interface, with further development in multi-tenancy and machine learning features desired. Redis may improve in scaling clusters and could benefit from better GUI tools for management.
Ease of Deployment and Customer Service: Elastic Search supports a range of deployment options across on-premises, public cloud, and hybrid infrastructures, though typically reliant on community support. Redis offers straightforward deployment in various cloud environments but lacks extensive vendor-provided guidance, despite its simplicity reducing the need for extensive support.
Pricing and ROI: Elastic Search, while open-source, incurs costs for support and advanced features, with notable ROI in search and monitoring applications. Redis's open-source nature presents it as a cost-effective solution, although costs can escalate with managed infrastructure. Redis offers remarkable cost-benefit outcomes in specific use cases, outperforming traditional SQL databases in speed and efficiency.
We have not purchased any licensed products, and our use of Elastic Search is purely open-source, contributing positively to our ROI.
It is stable, and we do not encounter critical issues like server downtime, which could result in data loss.
The main benefits observed from using Elastic Search include improvements in operational efficiency, along with cost, time, and resource savings.
The customer support for Elastic Search is one of the best I have ever tried.
They have always been really responsible and responsive to my requests.
It has been sufficient to visit conferences such as SCALE in Southern California Linux Expo, where Elastic Search has a booth to talk to their staff.
I would rate its scalability a ten.
Since we're on the cloud, whenever we need to upgrade or add resources, they handle everything.
We haven't encountered any problems so far, and there is the potential for auto-scaling.
Data migration and changes to application-side configurations are challenging due to the lack of automatic migration tools in a non-clustered legacy system.
The data transfer sometimes exceeded the bandwidth limits without proper notification, which caused issues.
The stability of Elasticsearch was very high.
When you put one keyword, everything related to that keyword in your ecosystem will showcase all the results.
Redis is fairly stable.
From a technical point of view, there are no significant issues recalled as Elastic Search has been absolutely awesome for this use case and covers 100% of the needs.
If I need to parse one million records saved into Elastic Search, it becomes a nightmare because I need to do the pagination, and it is very problematic in that regard.
Observability features like search latency, indexing rate, and maybe rejected requests should be added to make the platform more reliable and accessible for everyone.
Data persistence and recovery face issues with compatibility across major versions, making upgrades possible but downgrades not active.
On the AWS side, it is very expensive because they charge based on query basis or how much data is transferred in and out, making it very expensive.
Having the hosted solution and not having to pay for essentially a DevOps person on staff to manage makes it affordable.
You can host it on-premises, which would incur zero cost, or take it as a SaaS-based service, where the expenses remain minimal.
Since we use an open-source version of Redis, we do not experience any setup costs or licensing expenses.
Elastic Search makes handling large data volumes efficient and supports complex search operations.
The most valuable feature of Elasticsearch was the quick search capability, allowing us to search by any criteria needed.
The speed with which Elastic Search is able to search through all of the documents we place into it is quite remarkable, as we search through 65 billion documents in less than a second in most cases, on a constant consistent basis.
It functions similarly to a foundational building block in a larger system, enabling native integration and high functionality in core data processes.
| Product | Market Share (%) |
|---|---|
| Elastic Search | 4.0% |
| Redis | 5.4% |
| Other | 90.6% |

| Company Size | Count |
|---|---|
| Small Business | 37 |
| Midsize Enterprise | 10 |
| Large Enterprise | 43 |
| Company Size | Count |
|---|---|
| Small Business | 11 |
| Midsize Enterprise | 3 |
| Large Enterprise | 8 |
Elasticsearch is a prominent open-source search and analytics engine known for its scalability, reliability, and straightforward management. It's a favored choice among enterprises for real-time data search, analysis, and visualization. Open-source Elasticsearch is free, offering a comprehensive feature set and scalability. It allows full control over deployments but requires managing and maintaining the infrastructure. On the other hand, Elastic Cloud provides a managed service with features like automated provisioning, high availability, security, and global reach.
Elasticsearch excels in handling time-sensitive data and complex search requirements across large datasets. Its scalability allows it to handle growing data volumes efficiently, maintaining high performance and fast response times. Integrated with Kibana, Elasticsearch enables powerful data visualization, providing real-time insights crucial for data-driven decision-making.
Elastic Cloud reduces operational overhead and improves scalability and performance, though it comes with associated costs. It is available on your preferred cloud provider — AWS, Azure, or Google Cloud. Customers who want to manage the software themselves, whether on public, private, or hybrid cloud, can download the Elastic Stack.
At its core, Elasticsearch is renowned for its full-text search capabilities, capable of performing complex queries and supporting features like fuzzy matching and auto-complete.
Peer reviews from various professionals highlight its strengths and weaknesses. Pros include its detection and correlation features, flexibility, cloud-readiness, extensibility, and efficient search capabilities. However, users have noted challenges like steep learning curves, data analysis limitations, and integration complexities. The platform is generally viewed as stable and scalable, with varying degrees of satisfaction regarding its usability and feature set.
In summary, Elasticsearch stands out for its high-speed search, scalability, and versatile analytics, making it a go-to solution for organizations managing large datasets. Its adaptability to different enterprise needs, robust community support, and continuous development keep it at the forefront of enterprise search and analytics solutions. However, potential users should be aware of its learning curve and the need for skilled personnel for optimization.
Redis offers high-speed, in-memory storage, renowned for real-time performance. It supports quick data retrieval and is used commonly in applications like analytics and gaming.
Renowned for real-time performance, Redis delivers high-speed in-memory storage, making it a favorite for applications needing quick data retrieval. Its diverse data structures and caching capabilities support a broad array of use cases, including analytics and gaming. Redis ensures robust scalability with master-slave replication and clustering, while its publish/subscribe pattern renders it reliable for event-driven applications. The solution integrates smoothly with existing systems, minimizing performance tuning needs. Although documentation on scalability and security could be improved, Redis remains cost-effective and stable, commonly utilized in cloud environments. Enhancing integration with cloud services like AWS and Google Cloud and refining GUI may improve usability.
What are the key features of Redis?Redis finds application across industries for tasks like caching to improve application performance and speed, minimizing database load. It enables real-time processing for session storage, push notifications, and analytics. As a messaging platform, Redis handles high traffic and supports replication and clustering for cross-platform scalability.
We monitor all Vector Databases reviews to prevent fraudulent reviews and keep review quality high. We do not post reviews by company employees or direct competitors. We validate each review for authenticity via cross-reference with LinkedIn, and personal follow-up with the reviewer when necessary.