Try our new research platform with insights from 80,000+ expert users

Elastic Search vs Weka comparison

 

Comparison Buyer's Guide

Executive Summary

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Elastic Search
Average Rating
8.2
Reviews Sentiment
6.5
Number of Reviews
88
Ranking in other categories
Indexing and Search (1st), Cloud Data Integration (5th), Search as a Service (1st), Vector Databases (2nd)
Weka
Average Rating
7.6
Reviews Sentiment
6.8
Number of Reviews
14
Ranking in other categories
Data Mining (4th), Anomaly Detection Tools (2nd)
 

Mindshare comparison

Elastic Search and Weka aren’t in the same category and serve different purposes. Elastic Search is designed for Indexing and Search and holds a mindshare of 12.0%, down 27.5% compared to last year.
Weka, on the other hand, focuses on Data Mining, holds 9.3% mindshare, down 21.2% since last year.
Indexing and Search Market Share Distribution
ProductMarket Share (%)
Elastic Search12.0%
Lucidworks6.7%
OpenText Knowledge Discovery (IDOL)6.3%
Other75.0%
Indexing and Search
Data Mining Market Share Distribution
ProductMarket Share (%)
Weka9.3%
IBM SPSS Modeler19.1%
IBM SPSS Statistics18.5%
Other53.099999999999994%
Data Mining
 

Featured Reviews

Vaibhav Shukla - PeerSpot reviewer
Senior Software Engineer at Agoda
Search performance has transformed large-scale intent discovery and hybrid query handling
While Elastic Search is a good product, I see areas for improvement, particularly regarding the misconception that any amount of data can simply be dumped into Elastic Search. When creating an index, careful consideration of data massaging is essential. Elastic Search stores mappings for various data types, which must remain below a certain threshold to maintain functionality. Users need to throttle the number of fields for searching to avoid overloading the system and ensure that the design of the document is efficient for the Elastic Search index. Additionally, I suggest utilizing ILM periodically throughout the year to manage data shuffling between clusters, preventing hotspots in the distribution of requests across nodes.
XS
Manager at XS AMSAFIS DATASETS, S.L.
A good solution offering a range of tools but is limited by its user-handling capacities
In a new machine learning job, if the method is a bit foreign to me, if I have to do it in R, it could be a tedious task. First, I need to identify the libraries required for the new methodology. This can involve identifying two, three, or even four libraries. Then, I need to read their manuals thoroughly. This is time-consuming. In Weka, as all machine learning tools are on my desktop, I easily find out the method. As a freelancer, people send me datasets, and I work on the statistics at home before providing the solution. When a solution needs to be implemented on a server, server programmers install it on the server. This is similar to Power BI, where I prepare files on my desktop, and someone else uploads them to the server for others to access. I think I cannot send a Weka solution to a server programmer. In Weka, anyone can run the program without being a programmer, which is a good feature since the entry cost is very low.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The most valuable feature of the solution is its utility and usefulness."
"The best feature of Elastic Search is it does exactly what it says."
"Elastic Search is very quick when handling a large volume of data."
"The most valuable feature of Elasticsearch is its convenience in handling unstructured data."
"Data indexing of historical data is the most beneficial feature of the product."
"All the quality features are there. There are about 60 to 70 reports available."
"I would recommend Elastic Search to other people who want to have fast search in their applications."
"Elastic Search makes handling large data volumes efficient and supports complex search operations."
"Weka is a very nice tool, it needs very small requirements. If I want to implement something in Python, I need a lot of memory and space but Weka is very lightweight. Anyone can implement any kind of algorithm, and we can show the results immediately to the client using the one-page feature. The client always wants to know the story. They want the result."
"There are many options where you can fill all of the data pre-processing options that you can implement when you're importing the data. You can also normalize the data and standardize it in an easier way."
"Weka eliminates the need for coding, allowing you to easily set parameters and complete the majority of the machine learning task with just a few clicks."
"In Weka, anyone can access the program without being a programmer, which is a good feature since the entry cost is very low."
"The path of machine learning in classification and clustering is useful. The GUI can get you results. No programming is needed. No need to write down your script first or send to your model or input your data."
"The interface is very good, and the algorithms are the very best."
"With clustering, if it's a yes, it's a yes, if it's a no, it's a no. It gives you a 100% level of accuracy of a model that has been trained, and that is in most cases, usually misleading. Classification is highly valuable when done as opposed to clustering."
"I mainly use this solution for the regression tree, and for its association rules. I run these two methodologies for Weka."
 

Cons

"The different applications need to be individually deployed."
"What they need is to be more transparent about the actual setup of the cluster and the deployment process."
"I have not explored Elastic Search at the most. Searching from vector DB is available in Elastic Search, and there is one more concept of graph searching or graph database searching. I have not explored it, but if it is not there, that would be an improvement area where Elastic Search can improve."
"We'd like more user-friendly integrations."
"I would rate the stability a seven out of ten. We faced a few issues."
"Enterprise scaling of what have been essentially separate, free open source software (FOSS) products has been a challenge, but the folks at Elastic have published new add-ons (X-Pack and ECE) to help large companies grow ELK to required scales."
"Elastic Search needs to improve authentication. It also needs to work on the Kibana visualization dashboard."
"Elastic Enterprise Search's tech support is good but it could be improved."
"A few people said it became slow after a while."
"Not particularly user friendly."
"If there are a lot more lines of code, then we should use another language."
"The filter section lacks some specific transformation tools. If you want to change a variable from a numeric variable to a categorical variable, you don't have a feature that can enable you to change a variable from a numeric variable to a categorical variable."
"In terms of scalability, I think Weka is not prepared to handle a large number of users."
"The visualization of Weka is subpar and could improve. Machine learning and visualization do not work well together. For example, we want to know how we can we delete empty cells or how can we fill in the empty cells without cleaning the data system and putting it together."
"While it might offer insights for basic warehouse tasks, it falls short of deeper understanding and results."
"I believe is there are a few newer algorithms that are not present in the Weka libraries. Whereas, for example, if I want to have a solution that involves deep learning, so I don't think that Weka has that capability. So in that case I have to use Python for ... predict any algorithms based on deep learning."
 

Pricing and Cost Advice

"We are paying $1,500 a month to use the solution. If you want to have endpoint protection you need to pay more."
"The version of Elastic Enterprise Search I am using is open source which is free. The pricing model should improve for the enterprise version because it is very expensive."
"We are using the Community Edition because Elasticsearch's licensing model is not flexible or suitable for us. They ask for an annual subscription. We also got the development consultancy from Elasticsearch for 60 days or something like that, but they were just trying to do the same trick. That's why we didn't purchase it. We are just using the Community Edition."
"​The pricing and license model are clear: node-based model."
"This is a free, open source software (FOSS) tool, which means no cost on the front-end. There are no free lunches in this world though. Technical skill to implement and support are costly on the back-end with ELK, whether you train/hire internally or go for premium services from Elastic."
"The pricing model is questionable and needs to be addressed because when you would like to have the security they charge per machine."
"To access all the features available you require both the open source license and the production license."
"An X-Pack license is more affordable than Splunk."
"The solution is free and open-source."
"As far as I know, Weka is a freeware tool, and I am not aware if they have an online solution or if it is a commercial product."
"Currently, I am using an open-source version so I don't know much about the price of this solution."
"We use the free version now. My faculty is very small."
report
Use our free recommendation engine to learn which Indexing and Search solutions are best for your needs.
881,733 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
12%
Computer Software Company
12%
Manufacturing Company
9%
Retailer
6%
Educational Organization
16%
University
15%
Computer Software Company
8%
Comms Service Provider
8%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business37
Midsize Enterprise10
Large Enterprise43
By reviewers
Company SizeCount
Small Business7
Midsize Enterprise1
Large Enterprise2
 

Questions from the Community

What do you like most about ELK Elasticsearch?
Logsign provides us with the capability to execute multiple queries according to our requirements. The indexing is very high, making it effective for storing and retrieving logs. The real-time anal...
What is your experience regarding pricing and costs for ELK Elasticsearch?
On the subject of pricing, Elastic Search is very cost-efficient. You can host it on-premises, which would incur zero cost, or take it as a SaaS-based service, where the expenses remain minimal.
What needs improvement with ELK Elasticsearch?
While Elastic Search is a good product, I see areas for improvement, particularly regarding the misconception that any amount of data can simply be dumped into Elastic Search. When creating an inde...
Ask a question
Earn 20 points
 

Comparisons

 

Also Known As

Elastic Enterprise Search, Swiftype, Elastic Cloud
No data available
 

Overview

 

Sample Customers

T-Mobile, Adobe, Booking.com, BMW, Telegraph Media Group, Cisco, Karbon, Deezer, NORBr, Labelbox, Fingerprint, Relativity, NHS Hospital, Met Office, Proximus, Go1, Mentat, Bluestone Analytics, Humanz, Hutch, Auchan, Sitecore, Linklaters, Socren, Infotrack, Pfizer, Engadget, Airbus, Grab, Vimeo, Ticketmaster, Asana, Twilio, Blizzard, Comcast, RWE and many others.
Information Not Available
Find out what your peers are saying about Elastic Search vs. Weka and other solutions. Updated: January 2022.
881,733 professionals have used our research since 2012.