Try our new research platform with insights from 80,000+ expert users

Google Cloud Bigtable vs Microsoft Azure Cosmos DB comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Jan 15, 2026

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Google Cloud Bigtable
Ranking in Managed NoSQL Databases
10th
Average Rating
8.6
Reviews Sentiment
6.3
Number of Reviews
9
Ranking in other categories
Non-Relational Databases (6th)
Microsoft Azure Cosmos DB
Ranking in Managed NoSQL Databases
1st
Average Rating
8.2
Reviews Sentiment
6.9
Number of Reviews
109
Ranking in other categories
Database as a Service (DBaaS) (4th), NoSQL Databases (2nd), Vector Databases (1st)
 

Mindshare comparison

As of January 2026, in the Managed NoSQL Databases category, the mindshare of Google Cloud Bigtable is 5.2%, down from 6.9% compared to the previous year. The mindshare of Microsoft Azure Cosmos DB is 16.4%, down from 17.2% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Managed NoSQL Databases Market Share Distribution
ProductMarket Share (%)
Microsoft Azure Cosmos DB16.4%
Google Cloud Bigtable5.2%
Other78.4%
Managed NoSQL Databases
 

Featured Reviews

AS
Team Lead at a financial services firm with 5,001-10,000 employees
Consistent performance and seamless cloud integration enhance analytics capabilities while reducing management complexity
One point for improvement in Google Cloud Bigtable is that people have confusion in mapping. There are many similar products available, and Google has managed services for similar products as well. It would be easier if the journey of knowing when to use Google Cloud Bigtable versus other Cloud SQL and alternates such as Cloud Spanner is made clearer for users. Regarding additional functionality for Google Cloud Bigtable, I am uncertain if LLMs can be integrated or if Google Cloud Bigtable can act as a vector store for LLM-specific use cases where we are interacting or using generative AI capabilities.
reviewer2724105 - PeerSpot reviewer
Senior Director of Product Management at a tech vendor with 1,001-5,000 employees
Provides super sharp latency, excellent availability, and the ability to effectively manage costs across different tenants
For integrating Microsoft Azure Cosmos DB with other Azure products or other products, there are a couple of challenges with the current system. Right now, the vectors are stored as floating-point numbers within the NoSQL document, which makes them inefficiently large. This leads to increased storage space requirements, and searching through a vast number of documents in the vector database becomes quite costly in terms of RUs. While the integration works well, the expense associated with it is relatively high. I would really like to see a reduction in costs for their vector search, as it is currently on the expensive side. The areas for improvement in Microsoft Azure Cosmos DB are vector pricing and vector indexing patterns, which are unintuitive and not well described. I would also like to see the parameters of Fleet Spaces made more powerful, as currently, it's somewhat lightweight. I believe they've made those changes intentionally to better understand the cost model. However, we would like to take a more aggressive approach in using it. One of the most frustrating aspects of Microsoft Azure Cosmos DB right now is that you can only store one vector per document. Additionally, you must specify the configuration of that vector when you create an instance of Microsoft Azure Cosmos DB. Once the database is set up, you can't change the vector configuration, which is incredibly limiting for experimentation. You want the ability to try different settings and see how they perform, as there are numerous use cases for storing more than one vector in a document. While interoperability within the vector database is acceptable—for example, I can search for vectors—I still desire a richer set of configuration options.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Bigtable is faster than other competitors in the market. It helps us collate all the data, and the security features are great. The latency is low, and the computation speed is fantastic. Bigtable is also a managed service, so you don't have to worry about anything aside from analyzing the data ingested."
"It's very user-friendly where streaming data is required."
"Scalability-wise, I rate the solution a ten out of ten."
"Stability-wise, it is a simple solution. I rate the solution's stability a ten out of ten."
"This solution is much more scalable than more traditional databases - at least the ones we are aware of."
"I like the drive and the support of this program."
"The main benefit I receive from Google Cloud Bigtable is the managed service part."
"The most valuable feature is the backup and replication service."
"One valuable feature of Microsoft Azure Cosmos DB is partitioning. Its performance is very nice."
"Cosmos is a PaaS, so you don't need to worry about infrastructure and hosting. It has various APIs that allow it to integrate with other solutions. For example, we are using a MongoDB-compatible API for customers, which makes it easier for developers on the team who previously used MongoDB or are accustomed to the old document storage paradigm."
"The biggest benefit it offers is scalability. It's easier to work with concurrency and updating data."
"Cosmos DB makes life easier because if we want to use Mongo-type data, or Cassandra-type data, or maybe even just a simple cable storage-type data, then graph, there are multiple ways to do this."
"The solution is used because we get faster response times with large data sets than with SQL. It's essential for us because we have half a billion rows, and we need to return them quickly."
"Latency and availability are incredible."
"We have both our SaaS app and the analytical side running without throttling issues."
"It is integral to our business because it helps manage schema and metadata for all our documents and customers. The AI insights we glean based on Azure OpenAI also end up in Cosmos DB. We need a NoSQL store because the schema is dynamic and flexible, so Cosmos DB is a great fit. It has four nines or possibly five nines availability, excellent geo-distribution, and auto-scaling."
 

Cons

"The lagging problem of the product I face is an area of concern where improvements are required."
"The cost of this product is too expensive."
"I've used Bigtable for about three or four years."
"Improvement should be made as per customer recommended and requirements."
"The pricing of the solution needs to be improved."
"This product needs better security and transparency, and the price should be reduced."
"When it comes to complex queries, a user can't get any help from a drop-down box and pick columns. It would be great if some improvements could be made in the aforementioned area concerning the solution."
"Azure Cosmos DB could be better for business intelligence and analytical queries."
"Continuing to educate customers on how they can take better advantage of Microsoft Azure Cosmos DB without having to completely rewrite their entire application paradigm would be beneficial. They can help them understand that there are multiple options to interact with it. They do not necessarily have to start from scratch. They can refactor their existing application to be able to use it better."
"The auto-scaling feature adjusts hourly. We have many processes that write stuff in batches, so we must ensure that the load is spread evenly throughout the hour. It would be much easier if it were done by the minute. I'm looking forward to the vector database search that they are adding. It's a pretty cool new feature."
"Cosmos DB should continue evolving in AI features. We expect Cosmos DB to lead on that. There is potential for improved security features, which is important for data storage, especially for Dell Technologies. We must ensure data security remains the top priority."
"It would be ideal if we could integrate Cosmos DB with our Databricks. At this point, that's not possible."
"The topic of RU consumption needs better documentation. Now that Microsoft has partnered with different LLM organizations, such as OpenAI, a bot could guide us through different metrics present in Microsoft Azure Cosmos DB."
"I do not have any specific suggestions for improvements at the moment. However, having more AI capabilities in the future would be beneficial."
"There is room for improvement in their customer support services."
 

Pricing and Cost Advice

"I would like to see better pricing. It is not too expensive, but it isn't cheap either."
"When we've budgeted for our resources, it's one of the more expensive ones, but it's still not very expensive per month."
"The customer had a high budget, but it turned out to be a little bit cheaper than what they expected. I am not sure how much they have spent so far, but they are satisfied with the pricing."
"The solution is a bit on the expensive side."
"For the cloud, we don't pay for the license, but for the on-prem versions, we do pay."
"It is cost-efficient as long as you understand the right setup to optimize usage. Knowing the data needs of the organization and adjusting the Microsoft Azure Cosmos DB usage accordingly helps save costs, but if you don't know, you could end up spending more than necessary."
"It is cost-effective. They offer two pricing models. One is the serverless model and the other one is the vCore model that allows provisioning the resources as necessary. For our pilot projects, we can utilize the serverless model, monitor the usage, and adjust resources as needed."
"The pricing for Microsoft Azure Cosmos DB is good. Initially, it seemed like an expensive way to manage a NoSQL data store, but so many improvements that have been made to the platform have made it cost-effective."
"Microsoft Azure Cosmos DB's licensing costs are monthly."
report
Use our free recommendation engine to learn which Managed NoSQL Databases solutions are best for your needs.
881,082 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
10%
Computer Software Company
8%
Manufacturing Company
7%
Educational Organization
7%
Legal Firm
13%
Financial Services Firm
11%
Comms Service Provider
9%
Manufacturing Company
8%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business6
Large Enterprise3
By reviewers
Company SizeCount
Small Business33
Midsize Enterprise21
Large Enterprise58
 

Questions from the Community

What do you like most about Google Cloud Bigtable?
Scalability-wise, I rate the solution a ten out of ten.
What needs improvement with Google Cloud Bigtable?
One point for improvement in Google Cloud Bigtable is that people have confusion in mapping. There are many similar products available, and Google has managed services for similar products as well....
What is your primary use case for Google Cloud Bigtable?
My main use case for Google Cloud Bigtable is mainly for advertisement-related analytics-related use cases.
What do you like most about Microsoft Azure Cosmos DB?
The initial setup is simple and straightforward. You can set up a Cosmos DB in a day, even configuring things like availability zones around the world.
What is your experience regarding pricing and costs for Microsoft Azure Cosmos DB?
Microsoft Azure Cosmos DB's pricing model has aligned with my budget expectations because I can tune the RU as I need to, which helps a lot. Microsoft Azure Cosmos DB's dynamic auto-scale or server...
What needs improvement with Microsoft Azure Cosmos DB?
I have not utilized Microsoft Azure Cosmos DB multi-model support for handling diverse data types. I'm not in the position to decide if clients will use Microsoft Azure Cosmos DB or any other datab...
 

Also Known As

Google BigTable
Microsoft Azure DocumentDB, MS Azure Cosmos DB
 

Overview

 

Sample Customers

Cognite, Dow Jones, Loblaw Digital
TomTom, KPMG Australia, Bosch, ASOS, Mercedes Benz, NBA, Zero Friction, Nederlandse Spoorwegen, Kinectify
Find out what your peers are saying about Google Cloud Bigtable vs. Microsoft Azure Cosmos DB and other solutions. Updated: December 2025.
881,082 professionals have used our research since 2012.