Try our new research platform with insights from 80,000+ expert users
reviewer1974104 - PeerSpot reviewer
Software Engineering Manager at a computer software company with 201-500 employees
User
Top 10
Sep 23, 2024
Centralized pipeline with synthetic testing and a customized dashboard
Pros and Cons
  • "The ability to create custom dashboards has been incredibly useful, allowing us to visualize key metrics and KPIs in a way that makes sense for different teams and stakeholders."
  • "I spent longer than I should have figuring out how to correlate logs to traces, mostly related to environmental variables."

What is our primary use case?

Our primary use case is custom and vendor-supplied web application log aggregation, performance tracing and alerting. 

We run a mix of AWS EC2, Azure serverless, and colocated VMWare servers to support higher education web applications. Managing a hybrid multi-cloud solution across hundreds of applications is always a challenge. 

Datadog agents on each web host, and native integrations with GitHub, AWS, and Azure gets all of our instrumentation and error data in one place for easy analysis and monitoring.

How has it helped my organization?

Through the use of Datadog across all of our apps, we were able to consolidate a number of alerting and error-tracking apps, and Datadog ties them all together in cohesive dashboards. 

Whether the app is vendor-supplied or we built it ourselves, the depth of tracing, profiling, and hooking into logs is all obtainable and tunable. Both legacy .NET Framework and Windows Event Viewer and cutting-edge .NET Core with streaming logs all work. The breadth of coverage for any app type or situation is really incredible. It feels like there's nothing we can't monitor.

What is most valuable?

Centralized pipeline tracking and error logging provide a comprehensive view of our development and deployment processes, making it much easier to identify and resolve issues quickly. 

Synthetic testing has been a game-changer, allowing us to catch potential problems before they impact real users. Real user monitoring gives us invaluable insights into actual user experiences, helping us prioritize improvements where they matter most. 

The ability to create custom dashboards has been incredibly useful, allowing us to visualize key metrics and KPIs in a way that makes sense for different teams and stakeholders. 

These features form a powerful toolkit that helps us maintain high performance and reliability across our applications and infrastructure, ultimately leading to better user satisfaction and more efficient operations.

What needs improvement?

I'd like to see an expansion of the Android and IOS apps to have a simplified CI/CD pipeline history view. 

I like the idea of monitoring on the go, yet it seems the options are still a bit limited out of the box. While the documentation is very good considering all the frameworks and technology Datadog covers, there are areas - specifically .NET Profiling and Tracing of IIS-hosted apps - that need a lot of focus to pick up on the key details needed. 

In some cases the screenshots don't match the text as updates are made. I spent longer than I should have figuring out how to correlate logs to traces, mostly related to environmental variables.

Buyer's Guide
Datadog
January 2026
Learn what your peers think about Datadog. Get advice and tips from experienced pros sharing their opinions. Updated: January 2026.
881,082 professionals have used our research since 2012.

For how long have I used the solution?

I've used the solution for about three years.

What do I think about the stability of the solution?

We have been impressed with the uptime and clean and light resource usage of the agents.

What do I think about the scalability of the solution?

The solution has been very scalable and customizable.

How are customer service and support?

Sales service is always helpful in tuning our committed costs and alerting us when we start spending outside the on-demand budget.

Which solution did I use previously and why did I switch?

We used a mix of a custom error email system, SolarWinds, UptimeRobot, and GitHub actions. We switched to find one platform that could give deep app visibility regardless of whether it is Linux or Windows or Container, cloud or on-prem hosted.

How was the initial setup?

Generally simple, but .NET Profiling of IIS and aligning logs to traces and profiles was a challenge.

What about the implementation team?

We implemented the solution in-house. 

What was our ROI?

I'd count our ROI as significant time saved by the development team assessing bugs and performance issues.

What's my experience with pricing, setup cost, and licensing?

Set up live trials to asses cost scaling. Small decisions around how monitors are used can have big impacts on cost scaling. 

Which other solutions did I evaluate?

NewRelic was considered. LogicMonitor was chosen over Datadog for our network and campus server management use cases.

What other advice do I have?

Excited to dig further into the new offerings around LLM and continue to grow our footprint in Datadog. 

Which deployment model are you using for this solution?

Hybrid Cloud

If public cloud, private cloud, or hybrid cloud, which cloud provider do you use?

Microsoft Azure
Disclosure: My company does not have a business relationship with this vendor other than being a customer.
PeerSpot user
ZJ - PeerSpot reviewer
Software Engineer at a computer software company with 201-500 employees
User
Top 20
Sep 23, 2024
Very good custom metrics, dashboards, and alerts
Pros and Cons
  • "The dashboards provide a comprehensive and visually intuitive way to monitor all our key data points in real-time, making it easier to spot trends and potential issues."
  • "One key improvement we would like to see in a future Datadog release is the inclusion of certain metrics that are currently unavailable. Specifically, the ability to monitor CPU and memory utilization of AWS-managed Airflow workers, schedulers, and web servers would be highly beneficial for our organization."

What is our primary use case?

Our primary use case for Datadog involves utilizing its dashboards, monitors, and alerts to monitor several key components of our infrastructure. 

We track the performance of AWS-managed Airflow pipelines, focusing on metrics like data freshness, data volume, pipeline success rates, and overall performance. 

In addition, we monitor Looker dashboard performance to ensure data is processed efficiently. Database performance is also closely tracked, allowing us to address any potential issues proactively. This setup provides comprehensive observability and ensures that our systems operate smoothly.

How has it helped my organization?

Datadog has significantly improved our organization by providing a centralized platform to monitor all our key metrics across various systems. This unified observability has streamlined our ability to oversee infrastructure, applications, and databases from a single location. 

Furthermore, the ability to set custom alerts has been invaluable, allowing us to receive real-time notifications when any system degradation occurs. This proactive monitoring has enhanced our ability to respond swiftly to issues, reducing downtime and improving overall system reliability. As a result, Datadog has contributed to increased operational efficiency and minimized potential risks to our services.

What is most valuable?

The most valuable features we’ve found in Datadog are its custom metrics, dashboards, and alerts. The ability to create custom metrics allows us to track specific performance indicators that are critical to our operations, giving us greater control and insights into system behavior. 

The dashboards provide a comprehensive and visually intuitive way to monitor all our key data points in real-time, making it easier to spot trends and potential issues. Additionally, the alerting system ensures we are promptly notified of any system anomalies or degradations, enabling us to take immediate action to prevent downtime. 

Beyond the product features, Datadog’s customer support has been incredibly timely and helpful, resolving any issues quickly and ensuring minimal disruption to our workflow. This combination of features and support has made Datadog an essential tool in our environment.

What needs improvement?

One key improvement we would like to see in a future Datadog release is the inclusion of certain metrics that are currently unavailable. Specifically, the ability to monitor CPU and memory utilization of AWS-managed Airflow workers, schedulers, and web servers would be highly beneficial for our organization. These metrics are critical for understanding the performance and resource usage of our Airflow infrastructure, and having them directly in Datadog would provide a more comprehensive view of our system’s health. This would enable us to diagnose issues faster, optimize resource allocation, and improve overall system performance. Including these metrics in Datadog would greatly enhance its utility for teams working with AWS-managed Airflow.

For how long have I used the solution?

I've used the solution for four months.

What do I think about the stability of the solution?

The stability of Datadog has been excellent. We have not encountered any significant issues so far. 

The platform performs reliably, and we have experienced minimal disruptions or downtime. This stability has been crucial for maintaining consistent monitoring and ensuring that our observability needs are met without interruption.

What do I think about the scalability of the solution?

Datadog is generally scalable, allowing us to handle and display thousands of custom metrics efficiently. However, we’ve encountered some limitations in the table visualization view, particularly when working with around 10,000 data points. In those cases, the search functionality doesn’t always return all valid results, which can hinder detailed analysis.

How are customer service and support?

Datadog's customer support plays a crucial role in easing the initial setup process. Their team is proactive in assisting with metric configuration, providing valuable examples, and helping us navigate the setup challenges effectively. This support significantly mitigates the complexity of the initial setup.

Which solution did I use previously and why did I switch?

We used New Relic before.

How was the initial setup?

The initial setup of Datadog can be somewhat complex, primarily due to the learning curve associated with configuring each metric field correctly for optimal data visualization. It often requires careful attention to detail and a good understanding of each option to achieve the desired graphs and insights

What about the implementation team?

We implemented the solution in-house.

Disclosure: My company does not have a business relationship with this vendor other than being a customer.
PeerSpot user
Buyer's Guide
Datadog
January 2026
Learn what your peers think about Datadog. Get advice and tips from experienced pros sharing their opinions. Updated: January 2026.
881,082 professionals have used our research since 2012.
Ishmeet Kaur - PeerSpot reviewer
Software Engineer at a tech vendor with 10,001+ employees
Vendor
Top 10
Sep 20, 2024
Consolidates alerts, offers comprehensive views, and has synthetic testing
Pros and Cons
  • "The centralized pipeline tracking and error logging provide a comprehensive view of our development and deployment processes, making it much easier to identify and resolve issues quickly."
  • "I like the idea of monitoring on the go, however, it seems the options are still a bit limited out of the box."

What is our primary use case?

Our primary use case is custom and vendor-supplied web application log aggregation, performance tracing and alerting. 

We run a mix of AWS EC2, Azure serverless, and colocated VMWare servers to support higher education web applications. 

We're managing a hybrid multi-cloud solution across hundreds of applications, which is always a challenge. There are Datadog agents on each web host, and native integrations with GitHub, AWS, and Azure and that gets all of our instrumentation and error data in one place for easy analysis and monitoring.

How has it helped my organization?

Through the use of Datadog across all of our apps, we were able to consolidate a number of alerting and error-tracking apps, and Datadog ties them all together in cohesive dashboards. Whether the app is vendor-supplied or we built it ourselves, the depth of tracing, profiling, and hooking into logs is all obtainable and tunable. Both legacy .NET Framework and Windows Event Viewer and cutting-edge .NET Core with streaming logs all work. The breadth of coverage for any app type or situation is really incredible. It feels like there's nothing we can't monitor.

What is most valuable?

When it comes to Datadog, several features have proven particularly valuable. 

The centralized pipeline tracking and error logging provide a comprehensive view of our development and deployment processes, making it much easier to identify and resolve issues quickly. 

Synthetic testing has been a game-changer, allowing us to catch potential problems before they impact real users. Real user monitoring gives us invaluable insights into actual user experiences, helping us prioritize improvements where they matter most. And the ability to create custom dashboards has been incredibly useful, allowing us to visualize key metrics and KPIs in a way that makes sense for different teams and stakeholders. 

Together, these features form a powerful toolkit that helps us maintain high performance and reliability across our applications and infrastructure, ultimately leading to better user satisfaction and more efficient operations.

What needs improvement?

I'd like to see an expansion of the Android and IOS apps to have a simplified CI/CD pipeline history view. 

I like the idea of monitoring on the go, however, it seems the options are still a bit limited out of the box. While the documentation is very good considering all the frameworks and technology Datadog covers, there are areas - specifically .NET Profiling and Tracing of IIS-hosted apps - that need a lot of focus to pick up on the key details needed. 

Sometimes, the screenshots don't match the text as updates are made. I spent longer than I should have figured out how to correlate logs to traces, mostly related to environmental variables.

For how long have I used the solution?

I've used the solution for about three years.

What do I think about the stability of the solution?

We have been impressed with the uptime and clean and light resource usage of the agents.

What do I think about the scalability of the solution?

The product is very scalable and very customizable.

How are customer service and support?

Technical support is always helpful to help us tune our committed costs and alert us when we start spending out of the on-demand budget.

Which solution did I use previously and why did I switch?

We used a mix of a custom error email system, SolarWinds, UptimeRobot, and GitHub actions. We switched to find one platform that could give deep app visibility regardless of Linux or Windows or Container, cloud or on-prem hosted.

How was the initial setup?

The setup is generally simple. .NET Profiling of IIS and aligning logs to traces and profiles was a challenge.

What about the implementation team?

We implemented the solution in-house. 

What was our ROI?

ROI is reflected in in significant time saved by the development team assessing bugs and performance issues.

What's my experience with pricing, setup cost, and licensing?

Set up live trials to asses cost scaling. Small decisions around how monitors are used can impact cost scaling. 

Which other solutions did I evaluate?

NewRelic was considered. LogicMonitor was chosen over Datadog for our network and campus server management use cases.

What other advice do I have?

We're excited to explore the new offerings around LLM further and continue to expand our presence in Datadog. 

Which deployment model are you using for this solution?

Hybrid Cloud

If public cloud, private cloud, or hybrid cloud, which cloud provider do you use?

Microsoft Azure
Disclosure: My company does not have a business relationship with this vendor other than being a customer.
PeerSpot user
reviewer2553732 - PeerSpot reviewer
Staff Full-Stack Engineer at a financial services firm with 1,001-5,000 employees
User
Top 20
Sep 30, 2024
Prompt support with good logging and helps with standardization
Pros and Cons
  • "The initial setup was straightforward from my own experience, helping integrate within the application and service levels."
  • "In production, we intend to use trace IDs generated by RUM to attach to support tickets when a user experiences a traceable network error, and we want to display this trace ID to the user so if they were to contact us about a specific issue, they can provide us an exact ID displayed to them back to us. Currently, this is not possible out-of-the-box client-side without inventing our own solution for capturing these trace IDs, such as shimming the native fetch or returning the ID from the service response."

What is our primary use case?

Internally our primary usage of Datadog pertains around APM/tracing, logging, RUM (real user monitoring), synthetic testing of service/application health and state, overall general monitoring + observability, and custom dashboards for aggregate observability. We also are more frequently leveraging the more recent service catalog feature.

We have several microservices, several databases, and a few web applications (both external and internal facing), and all of these within our systems are contained within several environments ranging from dev, sit, eat, and production.

How has it helped my organization?

Datadog has had a massive impact on our department. Before, we had loose logging dumped into a sea of GCP logs with haphazard custom solutions for traceability between logs and network calls. Datadog has helped standardize and normalize our processes around observability while providing fantastic tools for aggregating insight around what is monitored regularly, all wrapped in an easy-to-use UI.

Additionally, a range of types of users exist within our department, each with its own positive impact on Datadog. DevOps leverages it to easily manage infra, developers leverage it to easily monitor/debug services and applications, and business leverages it for statistics.

What is most valuable?

Personally I've found the RUM (real user monitoring) to be above and beyond what I've worked with before. Client-side monitoring has always been on the short end of the stick but the information collected and ease of instrumentation provided by Datadog is second to none.

Having a live dynamic service map is also one of my favourite features; it provides real-time insights into which services/applications are connected to which.

We are also investigating the new API catalog feature set, which I believe will provide a high-value impact for real-time documentation and information about all of our shared microservices that other dev teams can use.

What needs improvement?

In production, we intend to use trace IDs generated by RUM to attach to support tickets when a user experiences a traceable network error, and we want to display this trace ID to the user so if they were to contact us about a specific issue, they can provide us an exact ID displayed to them back to us. Currently, this is not possible out-of-the-box client-side without inventing our own solution for capturing these trace IDs, such as shimming the native fetch or returning the ID from the service response.

For how long have I used the solution?

I've used the solution for approximately two years across our department and around a year or so of it being used practically and fully integrated into our systems.

What do I think about the stability of the solution?

Aside from one very brief bad update from the Datadog team around RUM where they broke the native 'fetch' for node in an update to RUM (which was resolved quickly) as it used to -- and may still -- modified the global 'fetch'; Datadog as a whole solution has been highly stable.

What do I think about the scalability of the solution?

It's easy to implement and scale provided a there's a solid IaC solution in place to integrate across your system.

How are customer service and support?

The Datadog support team is prompt and helpful when tickets have been submitted from our end. When their support team have been unsure, they've properly reached out internally to the relevant SME to help answer any questions we've had prior.

How would you rate customer service and support?

Positive

Which solution did I use previously and why did I switch?

I've personally dabbled with some other open-source observability and monitoring solutions; however, prior to Datadog, our department did not have any solutions other than log dumps to GCP.

How was the initial setup?

The initial setup was straightforward from my own experience, helping integrate within the application and service levels; however, our DevOps team handled most of the infra process with minimal complaints.

What about the implementation team?

We handled the solution in-house.

What's my experience with pricing, setup cost, and licensing?

I personally am not involved in the decision around costing; however, I am aware that when we first set up Datadog, we explicitly configured our services/applications to have a master switch to enable Datadog integration so that we can dynamically enable/disable targeted environments as need due to the costs being associated on a per service basis for APM/logging/etc.

Which other solutions did I evaluate?

I was not involved in the decision-making regarding the evaluation of other options.

What other advice do I have?

I highly recommend Datadog, and I would explore it for my own individual projects in the future, provided the cost is within reason. Otherwise, I would highly recommend it for any medium-to-large-sized org.

Which deployment model are you using for this solution?

Private Cloud

If public cloud, private cloud, or hybrid cloud, which cloud provider do you use?

Google
Disclosure: My company does not have a business relationship with this vendor other than being a customer.
PeerSpot user
Senior Software Engineer at a tech vendor with 51-200 employees
User
Top 5
Sep 26, 2024
Excellent for monitoring, analyzing, and optimizing performance
Pros and Cons
  • "Being able to filter requests by latency is invaluable, as it provides immediate insight into which endpoints require further analysis and optimization."
  • "The query performance could be improved, particularly when handling large datasets, as slower response times can hinder efficiency."

What is our primary use case?

Our primary use case for Datadog is monitoring, analyzing, and optimizing the performance and health of our applications and infrastructure. 

We leverage its logging, metrics, and tracing capabilities to pinpoint issues, track system performance, and improve overall reliability. Datadog’s ability to provide real-time insights and alerting on key metrics helps us quickly address issues, ensuring smooth operations. 

It’s integral for visibility across our microservices architecture and cloud environments.

How has it helped my organization?

Datadog has been incredibly valuable to our organization. Its ability to pinpoint warnings and errors in logs and provide detailed context is essential for troubleshooting. 

The platform's request tracing feature offers comprehensive insights into user flows, allowing us to quickly identify issues and optimize performance. 

Additionally, Datadog's real-time monitoring and alerting capabilities help us proactively manage system health, ensuring operational efficiency across our applications and infrastructure.

What is most valuable?

Being able to filter requests by latency is invaluable, as it provides immediate insight into which endpoints require further analysis and optimization. This feature helps us quickly identify performance bottlenecks and prioritize improvements. 

Additionally, the ability to filter requests by user email is extremely useful for tracking down user-specific issues faster. It streamlines the troubleshooting process and enables us to provide more targeted support to individual users, improving overall customer satisfaction.

What needs improvement?

The query performance could be improved, particularly when handling large datasets, as slower response times can hinder efficiency. Additionally, the interface can sometimes feel overwhelming, with so much happening at once, which may discourage users from exploring new features. Simplifying the layout or providing clearer guidance could enhance user experience. Any improvements related to query optimization would be highly beneficial, as it would further streamline workflows and boost productivity.

For how long have I used the solution?

I've used the solution for five years.

Disclosure: My company does not have a business relationship with this vendor other than being a customer.
PeerSpot user
Senior Software Engineer at a tech vendor with 51-200 employees
User
Top 5
Sep 20, 2024
Capable of pinpointing warnings and errors in logs and provide detailed context
Pros and Cons
  • "Being able to filter requests by latency is invaluable, as it provides immediate insight into which endpoints require further analysis and optimization."
  • "The query performance could be improved, particularly when handling large datasets, as slower response times can hinder efficiency."

What is our primary use case?

Our primary use case for Datadog is to monitor, analyze, and optimize the performance and health of our applications and infrastructure. 

We leverage its logging, metrics, and tracing capabilities to pinpoint issues, track system performance, and improve overall reliability. 

Datadog’s ability to provide real-time insights and alerting on key metrics helps us quickly address issues, ensuring smooth operations. It’s integral for visibility across our microservices architecture and cloud environments.

How has it helped my organization?

Datadog has been incredibly valuable to our organization. Its ability to pinpoint warnings and errors in logs and provide detailed context is essential for troubleshooting. 

The platform's request tracing feature offers comprehensive insights into user flows, allowing us to quickly identify issues and optimize performance. 

Additionally, Datadog's real-time monitoring and alerting capabilities help us proactively manage system health, ensuring operational efficiency across our applications and infrastructure.

What is most valuable?

Being able to filter requests by latency is invaluable, as it provides immediate insight into which endpoints require further analysis and optimization. This feature helps us quickly identify performance bottlenecks and prioritize improvements. 

Additionally, the ability to filter requests by user email is extremely useful for tracking down user-specific issues faster. It streamlines the troubleshooting process and enables us to provide more targeted support to individual users, improving overall customer satisfaction.

What needs improvement?

The query performance could be improved, particularly when handling large datasets, as slower response times can hinder efficiency. 

Additionally, the interface can sometimes feel overwhelming, with so much happening at once, which may discourage users from exploring new features. 

Simplifying the layout or providing clearer guidance could enhance user experience. Any improvements related to query optimization would be highly beneficial, as it would further streamline workflows and boost productivity.

For how long have I used the solution?

I've used the solution for five years.

Disclosure: My company does not have a business relationship with this vendor other than being a customer.
PeerSpot user
Mason Parry - PeerSpot reviewer
Data Engineer at a tech vendor with 201-500 employees
User
Top 20
Sep 20, 2024
Customizable alerts, good dashboards, and improves reliability
Pros and Cons
  • "I like how we can customize alerts, and when alerts have become too noisy, we turn their threshold down fairly easily."
  • "It's not that straightforward when creating an alert. The syntax is a little confusing."

What is our primary use case?

We have several teams and several different projects, all working in tandem, so there are a lot of logs and monitoring that need to be done. We use Datadog mostly for alerting when things go down. 

We also have several dashboards to keep track of critical operations and to make sure things are running without issues. The Slack messaging is essential in our workflow in letting us know when an alert is triggered. I also appreciate all the graphs you can make, as it gives our team a good overview of how our services are doing.

How has it helped my organization?

It has improved our reliability and our time to get back up from an outage. By creating an alert and then messaging a Slack channel, we know when something goes down fairly fast. This, in turn, improves our response time to swarm on an issue without it affecting customers. The graphs have also been useful to demonstrate to higher-ups how our services are performing, allowing them to make more informed decisions when it comes to the team. 

What is most valuable?

The alerts are the most valuable. Having alerts have saved us countless times in the past and is essentially what we use data dog for. 

I like how we can customize alerts, and when alerts have become too noisy, we turn their threshold down fairly easily. This is also the case when alerts should be notifying us more often. 

I also like the graphs and how customizable they are. It allows us to create a nice-looking dashboard with all sorts of information relating to our project. This gives us a quick overview of how things are going.

What needs improvement?

It's not that straightforward when creating an alert. The syntax is a little confusing. I guess that the trade-off is customizability. But it would be nice to have a click-and-drag kind of way when creating an alert. So, if someone who isn't so familiar with Datadog or tech in general wanted to create an alert, they wouldn't need to know the syntax. 

It would also be great if AI could be used to generate alerts and graphs. I could write a short prompt, and then the AI could auto-generate alerts and graphs for me.

For how long have I used the solution?

I've used the solution for more than two years.

Disclosure: My company does not have a business relationship with this vendor other than being a customer.
PeerSpot user
Delivery Manager, DBA Services at a manufacturing company with 10,001+ employees
Real User
Jan 26, 2023
It combines tracing and logging in one tool
Pros and Cons
  • "Datadog provides tracing and logging, whereas Dynatrace focuses on tracing, and Splunk is more of a logging tool. Datadog's advantage is that we don't need two tools."
  • "Datadog isn't as mature as some of the established players like Dynatrace or Splunk. It's a new product, so they are constantly releasing new features, and I don't have much to complain about."

What is our primary use case?

We use Datadog for monitoring to get the traces and logs of all our applications. Datadog provides dashboard and alert capabilities to identify if something is wrong with various teams. More than 200 users, mostly software engineers, work with Datadog. 

What is most valuable?

Datadog provides tracing and logging, whereas Dynatrace focuses on tracing, and Splunk is more of a logging tool. Datadog's advantage is that we don't need two tools. 

What needs improvement?

Datadog isn't as mature as some of the established players like Dynatrace or Splunk. It's a new product, so they are constantly releasing new features, and I don't have much to complain about.

For how long have I used the solution?

We have used Datadog for seven months.

What do I think about the stability of the solution?

We haven't issued any issues so far, so it's a highly stable platform. 

What do I think about the scalability of the solution?

We are a unit within a much larger entity that is using Datadog. It can scale up to meet your needs. 

How are customer service and support?

We have regular calls with the Datadog team. They take feedback and bring in the product managers to quickly answer questions and fix issues. They help you deal with some of the issues you have with any new product, but Datadog is one of the fastest-growing products in the monitoring space.

How was the initial setup?

You don't need to install anything because it's a SaaS product with a web-based UI. They provide you the credentials to give you admin access. You only need to install the agents where you need monitoring. The time required to deploy the agent depends on what you're monitoring, but the solution itself works like Office 365 or any other SaaS product. 

Which deployment model are you using for this solution?

Public Cloud

If public cloud, private cloud, or hybrid cloud, which cloud provider do you use?

Amazon Web Services (AWS)
Disclosure: My company does not have a business relationship with this vendor other than being a customer.
PeerSpot user
Buyer's Guide
Download our free Datadog Report and get advice and tips from experienced pros sharing their opinions.
Updated: January 2026
Buyer's Guide
Download our free Datadog Report and get advice and tips from experienced pros sharing their opinions.