

Teradata and Amazon EMR compete in the data warehousing and analytics category. Teradata appears to have the upper hand due to its unmatched performance and robust toolset for analytics, although Amazon EMR offers significant advantages in cloud scalability.
Features: Teradata showcases its prowess with massively parallel processing, fast query execution, and adaptability through row and columnar partitioning. It provides extensive analytics tools and customer-driven innovations in workload management. Amazon EMR excels in cloud scalability with managed services like Hive and Spark, and seamless cluster resizing, offering flexibility in operations.
Room for Improvement: Teradata could enhance its cloud integration and unstructured data processing; its pricing and transactional processing models can also be improved. There is a need for better platform support. Amazon EMR needs improvements in startup speed, cost efficiency, and its user interface. Additionally, its support for recent open-source technologies could be enhanced.
Ease of Deployment and Customer Service: Teradata offers multiple deployment options across on-premises, hybrid, and public cloud environments, with well-regarded customer service, albeit occasionally slow. Amazon EMR provides straightforward cloud-focused deployments, with generally satisfactory but improvable customer and technical support, especially in response times.
Pricing and ROI: Teradata involves high initial setup costs but returns significant investment through enhanced performance, appealing to large enterprises. Amazon EMR uses a moderately priced pay-as-you-go model, which can lead to hidden expenses if not managed carefully, though it remains economical for certain cases.
At least fifteen to twenty percent of our time has been saved using Teradata, which has positively affected team productivity and business outcomes.
Independent research showed that Teradata VantageCloud users achieved an average ROI of 427% across three years with payback under a year, demonstrating the platform's ability to deliver a strong financial return.
We have realized a return on investment, with a reduction of staff from 27 to eight, and our current return on investment is approximately 14%.
They help with billing, cost determination, IAM properties, security compliance, and deployment and migration activities.
We get all call support, screen sharing support, and immediate support, so there are no problems.
I would rate the technical support from Amazon as ten out of ten.
The customer support for Teradata has been great.
They are responsive and knowledgeable, and the documentation is very helpful.
Customer support is very good, rated eight out of ten under our essential agreement.
Scalability can be provisioned using the auto-scaling feature, EC2 instances, on-demand instances, and storage locations like block storage, S3, or file storage.
Whenever we need more resources, we can add that in Teradata, and when not needed, we can scale it down as well.
This flexibility allows organizations to scale according to their needs, balancing performance, cost, and compliance requirements.
This expansion can occur without incurring downtime or taking systems offline.
Regular updates, patch installations, monitoring, logging, alerting, and disaster recovery activities are crucial for maintaining stability.
Its massively parallel process architecture allows the platform to distribute workload efficiently, enabling organizations to run heavy analytic queries without compromising speed or stability.
I find the stability to be almost a ten out of ten.
The workload management and software maturity provide a reliable system.
The cost factor differs significantly. When you run Spark application on EKS, you run at the pod level, so you can control the compute cost. But in Amazon EMR, when you have to run one application, you have to launch the entire EC2.
There is room for improvement with respect to retries, handling the volume of data on S3 buckets, cluster provisioning, scaling, termination, security, and integration between services like S3, Glue, Lake Formation, and DynamoDB.
I have thoughts on what would be great to see in the product, such as AI/ML features or additional options.
I want to highlight two features for improvement: first, storing data in various formats without requiring a tabular structure, accommodating unstructured data; and second, adding AI ML features to better integrate Gen AI, LLM concepts, and user-friendly experiences such as text-to-SQL capabilities.
Unlike SQL and Oracle, which have in-built replication capabilities, we don't have similar functionality with Teradata.
The most challenging aspect is finding Teradata resources, so we are focusing on internal training and looking for more Teradata experts.
Costs are involved based on cluster resources, data volumes, EC2 instances, instance sizes, Kubernetes, Docker services, storage, and data transfers.
I would rate the price for Amazon EMR, where one is high and ten is low, as a good one.
Teradata is much more expensive than SQL, which is well-performed and cheaper.
Initially, it may seem expensive compared to similar cloud databases, however, it offers significant value in performance, stability, and overall output once in use.
Role-based access control (RBAC), strong audit and compliance features, high availability, fault tolerance, and encrypted data at rest and in-transit are key features.
Amazon EMR helps in scalability, real-time and batch processing of data, handling efficient data sources, and managing data lakes, data stores, and data marts on file systems and in S3 buckets.
Amazon EMR provides out-of-the-box functionality because we can deploy and get Spark functionality over Hadoop.
The features at Amazon EMR that I have found most valuable are fully customizable functions.
Teradata's security helps our organization meet compliance requirements such as GDPR and IFRS, and it is particularly essential for revenue contracting or revenue recognition.
Its architecture allows information to be processed efficiently while maintaining stable performance, even in highly demanding environments.
It facilitates data integration, where we integrate and analyze data from various sources, making it a powerful and high-quality reliable solution for the company.
| Product | Market Share (%) |
|---|---|
| Teradata | 8.5% |
| Amazon EMR | 3.4% |
| Other | 88.1% |

| Company Size | Count |
|---|---|
| Small Business | 6 |
| Midsize Enterprise | 5 |
| Large Enterprise | 12 |
| Company Size | Count |
|---|---|
| Small Business | 28 |
| Midsize Enterprise | 13 |
| Large Enterprise | 52 |
Teradata is a powerful tool for handling substantial data volumes with its parallel processing architecture, supporting both cloud and on-premise environments efficiently. It offers impressive capabilities for fast query processing, data integration, and real-time reporting, making it suitable for diverse industrial applications.
Known for its robust parallel processing capabilities, Teradata effectively manages large datasets and provides adaptable deployment across cloud and on-premise setups. It enhances performance and scalability with features like advanced query tuning, workload management, and strong security. Users appreciate its ease of use and automation features which support real-time data reporting. The optimizer and intelligent partitioning help improve query speed and efficiency, while multi-temperature data management optimizes data handling.
What are the key features of Teradata?
What benefits and ROI do users look for?
In the finance, retail, and government sectors, Teradata is employed for data warehousing, business intelligence, and analytical processing. It handles vast datasets for activities like customer behavior modeling and enterprise data integration. Supporting efficient reporting and analytics, Teradata enhances data storage and processing, whether deployed on-premise or on cloud platforms.
We monitor all Cloud Data Warehouse reviews to prevent fraudulent reviews and keep review quality high. We do not post reviews by company employees or direct competitors. We validate each review for authenticity via cross-reference with LinkedIn, and personal follow-up with the reviewer when necessary.