Try our new research platform with insights from 80,000+ expert users

Amazon SageMaker vs Cloudera Data Science Workbench comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Amazon SageMaker
Ranking in Data Science Platforms
3rd
Average Rating
7.8
Reviews Sentiment
7.0
Number of Reviews
38
Ranking in other categories
AI Development Platforms (5th)
Cloudera Data Science Workb...
Ranking in Data Science Platforms
24th
Average Rating
7.0
Reviews Sentiment
6.9
Number of Reviews
2
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of August 2025, in the Data Science Platforms category, the mindshare of Amazon SageMaker is 6.1%, down from 8.8% compared to the previous year. The mindshare of Cloudera Data Science Workbench is 1.3%, down from 1.6% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

Saurabh Jaiswal - PeerSpot reviewer
Create innovative assistants with seamless data integration for large-scale projects
The various integration options available in Amazon SageMaker, such as Firehose for connecting to data pipelines, are simple to use. Tools like AWS Glue integrate well for data transformations. The Databricks integration aids data scientists and engineers. SageMaker is fully managed, offers high availability, flexibility with TensorFlow, PyTorch, and MXNet, and comes with pre-trained algorithms for forecasting, anomaly detection, and more.
Ismail Peer - PeerSpot reviewer
Useful for data science modeling but improvement is needed in MLOps and pricing
If you don't configure CDSW well, then it might be not useful for you. Deploying the tool can vary in complexity, but most of the time, it's relatively simple and straightforward. Triggering a job from data to production is easy, as the platform automates the deployment process. However, ensuring optimal resource allocation is essential for smooth operations.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"They are doing a good job of evolving."
"The technical support from AWS is excellent."
"The evolution from SageMaker Classic to SageMaker Studio, particularly the UI part of Studio, is commendable."
"The feature I found most valuable is the data catalog, as it assists with the lineage of data through the preparation pipeline."
"The most valuable features in Amazon SageMaker are its AutoML, feature store, and automated hyperparameter tuning capabilities."
"The most valuable feature of Amazon SageMaker is its integration. For example, AWS Lambda. Additionally, we can write Python code."
"The Autopilot feature is really good because it's helpful for people who don't have much experience with coding or data pipelines. When we suggest SageMaker to clients, they don't have to go through all the steps manually. They can leverage Autopilot to choose variables, run experiments, and monitor costs. The results are also pretty accurate."
"The product aggregates everything we need to build and deploy machine learning models in one place."
"The Cloudera Data Science Workbench is customizable and easy to use."
"I appreciate CDSW's ability to logically segregate environments, such as data, DR, and production, ensuring they don't interfere with each other. The deployment of machine learning is fast and easy to manage. Its API calls are also fast."
 

Cons

"Lacking in some machine learning pipelines."
"The training modules could be enhanced. We had to take in-person training to fully understand SageMaker, and while the trainers were great, I think more comprehensive online modules would be helpful."
"The platform could be more accessible to users with basic coding skills, making it more intuitive and easier for beginners to use comfortably."
"I would suggest that Amazon SageMaker provide free slots to allow customers to practice, such as a free slot to try out working with a Sandbox."
"When starting a new session, the waiting time can be quite long, ranging from two to five minutes."
"Amazon SageMaker can make it simpler to manage the data flow from start to finish, such as by integrating data, usingthe machine, and deploying models. This process could be more user-friendly compared to other tools. I would also like to improve integration with Bedrock and the LLM connection for AWS."
"The pricing of the solution is an issue...In SageMaker, monitoring could be improved by supporting more data types other than JSON and CSV."
"The model repository is a concern as models are stored on a bucket and there's an issue with versioning."
"Running this solution requires a minimum of 12GB to 16GB of RAM."
"The tool's MLOps is not good. It's pricing also needs to improve."
 

Pricing and Cost Advice

"In terms of pricing, I'd also rate it ten out of ten because it's been beneficial compared to other solutions."
"On average, customers pay about $300,000 USD per month."
"The product is expensive."
"The solution is relatively cheaper."
"The tool's pricing is reasonable."
"The pricing is comparable."
"I would rate the solution's price a ten out of ten since it is very high."
"I rate the pricing a five on a scale of one to ten, where one is the lowest price, and ten is the highest price. The solution is priced reasonably. There is no additional cost to be paid in excess of the standard licensing fees."
"The product is expensive."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
865,164 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
19%
Computer Software Company
11%
Manufacturing Company
9%
University
5%
Financial Services Firm
35%
Healthcare Company
9%
Manufacturing Company
9%
Computer Software Company
8%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
What do you like most about Amazon SageMaker?
We've had experience with unique ML projects using SageMaker. For example, we're developing a platform similar to ChatGPT that requires models. We utilize Amazon SageMaker to create endpoints for t...
What is your experience regarding pricing and costs for Amazon SageMaker?
If you manage it effectively, their pricing is reasonable. It's similar to anything in the cloud; if you don't manage it properly, it can be expensive, but if you do, it's fine.
What do you like most about Cloudera Data Science Workbench?
I appreciate CDSW's ability to logically segregate environments, such as data, DR, and production, ensuring they don't interfere with each other. The deployment of machine learning is fast and easy...
What needs improvement with Cloudera Data Science Workbench?
The tool's MLOps is not good. It's pricing also needs to improve.
What is your primary use case for Cloudera Data Science Workbench?
We have different use cases. Our banking use case uses machine learning to identify customer life events and recommend the best-suited card products. These machine-learning models are deployed in o...
 

Also Known As

AWS SageMaker, SageMaker
CDSW
 

Overview

 

Sample Customers

DigitalGlobe, Thomson Reuters Center for AI and Cognitive Computing, Hotels.com, GE Healthcare, Tinder, Intuit
IQVIA, Rush University Medical Center, Western Union
Find out what your peers are saying about Amazon SageMaker vs. Cloudera Data Science Workbench and other solutions. Updated: July 2025.
865,164 professionals have used our research since 2012.