Try our new research platform with insights from 80,000+ expert users

Amazon SageMaker vs Dataiku comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Amazon SageMaker
Ranking in Data Science Platforms
3rd
Average Rating
7.8
Reviews Sentiment
7.1
Number of Reviews
36
Ranking in other categories
AI Development Platforms (5th)
Dataiku
Ranking in Data Science Platforms
6th
Average Rating
8.2
Reviews Sentiment
7.1
Number of Reviews
12
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of April 2025, in the Data Science Platforms category, the mindshare of Amazon SageMaker is 7.3%, down from 9.8% compared to the previous year. The mindshare of Dataiku is 12.7%, up from 8.2% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

Hemant Paralkar - PeerSpot reviewer
Improves team collaboration with advanced feature sharing but needs a better user experience
Improvement is needed in the no-code and low-code capabilities of Amazon SageMaker. This would empower citizen data scientists to utilize the tool more effectively since many data scientists do not have a core development background. Additionally, dealing with frequent UI updates can be challenging, especially for infrastructure architects like myself. It involves effort to migrate to new UIs, making the updates not seamless. User auditing requires enhancements as tracking operations performed by users can be difficult due to dynamic IP validation and role propagation.
RichardXu - PeerSpot reviewer
The platform organizes workflows visually and efficiently
One of the valuable features of Dataiku is the workflow capability. It allows us to organize a workflow efficiently. The platform has a visual interface, making it much easier for educated professionals to organize their work. This feature is useful because it simplifies tasks and eliminates the need for a data scientist. If you are knowledgeable about AI, you can directly write using primitive tools like Pantera flow, PyTorch, and Scikit-learn. However, Dataiku makes this process much easier.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"I have contacted the solution's technical support, and they were really good. I rate the technical support a ten out of ten."
"Feature Store, CodeCommit, versioning, model control, and CI/CD pipelines are the most valuable features in Amazon SageMaker."
"I appreciate the ease of use in Amazon SageMaker."
"SageMaker is a comprehensive platform where I can perform all machine learning activities."
"The Autopilot feature is really good because it's helpful for people who don't have much experience with coding or data pipelines. When we suggest SageMaker to clients, they don't have to go through all the steps manually. They can leverage Autopilot to choose variables, run experiments, and monitor costs. The results are also pretty accurate."
"The intuitive interface and streamlined user experience make it easy to navigate and set up various tools like Visual Studio Code or Jupyter Notebook."
"Allows you to create API endpoints."
"One of the most valuable features of Amazon SageMaker for me is the one-touch deployment, which simplifies the process greatly."
"Data Science Studio's data science model is very useful."
"I believe the return on investment looks positive."
"The solution is quite stable."
"Our clients can easily drag and drop components and use them on the spot."
"The advantage is that you can focus on machine learning while having access to what they call 'recipes.' These recipes allow me to preprocess and prepare data without writing any code."
"Dataiku is highly regarded as it is a leader in the Gartner ranking."
"Extremely easy to use with its GUI-based functionality and large compatibility with various data sources. Also, maintenance processes are much more automated than ever, with fewer errors."
"Traceability is vital since I manage many cohorts, and collaboration is key as I have multiple engineers substituting for one another."
 

Cons

"One area for improvement is the pricing, which can be quite high."
"The solution needs to be cheaper since it now charges per document for extraction."
"The documentation must be made clearer and more user-friendly."
"SageMaker would be improved with the addition of reporting services."
"Having all documentation easily accessible on the front page of SageMaker would be a great improvement."
"Amazon SageMaker could improve in the area of hyperparameter tuning by offering more automated suggestions and tips during the tuning process."
"The pricing of the solution is an issue...In SageMaker, monitoring could be improved by supporting more data types other than JSON and CSV."
"While integration is available, there are concerns about how secure this integration is, particularly when exposing data to SageMaker."
"One of the main challenges was collaboration. Developers typically use GitHub to push and manage code, but integrating GitHub with Dataiku was complicated."
"There were stability issues: 1) SQL operations, such as partitioning, had bugs and showed wrong results. 2) Due to server downtime, scheduled processes used to fail. 3) Access to project folders was compromised (privacy issue) with wrong people getting access to confidential project folders."
"One area for improvement is the need for more capabilities similar to those provided by NVIDIA for parallel machine learning training. We still encounter some integration issues."
"In the next release of this solution, I would like to see deep learning better integrated into the tool and not simply an extension or plugin."
"The license is very expensive. It would be great to have an intermediate license for basic treatments that do not require extensive experience."
"I find that it is a little slow during use. It takes more time than I would expect for operations to complete."
"The technical support from Dataiku is not good. The support team does not provide adequate assistance, and there are concerns about billing requests."
"Although known for Big Data, the processing time to process 1.8 billion records was terribly slow (five days)."
 

Pricing and Cost Advice

"Amazon SageMaker is a very expensive product."
"SageMaker is worth the money for our use case."
"I would rate the solution's price a ten out of ten since it is very high."
"The cost offers a pay-as-you-go pricing model. It depends on the instance that you do."
"The product is expensive."
"The pricing could be better, especially for querying. The per-query model feels expensive."
"I rate the pricing a five on a scale of one to ten, where one is the lowest price, and ten is the highest price. The solution is priced reasonably. There is no additional cost to be paid in excess of the standard licensing fees."
"On average, customers pay about $300,000 USD per month."
"The annual licensing fees are approximately €20 ($22 USD) per key for the basic version and €40 ($44 USD) per key for the version with everything."
"Pricing is pretty steep. Dataiku is also not that cheap."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
845,406 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
18%
Educational Organization
13%
Computer Software Company
11%
Manufacturing Company
8%
Financial Services Firm
17%
Educational Organization
14%
Manufacturing Company
9%
Computer Software Company
8%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
What do you like most about Amazon SageMaker?
We've had experience with unique ML projects using SageMaker. For example, we're developing a platform similar to ChatGPT that requires models. We utilize Amazon SageMaker to create endpoints for t...
What is your experience regarding pricing and costs for Amazon SageMaker?
Before deploying SageMaker, I reviewed the pricing, especially for notebook instances. The cost for small to medium instances is not very high.
What is your experience regarding pricing and costs for Dataiku Data Science Studio?
The pricing for Dataiku is very high, which is its biggest downside. The model they follow is not consumption-based, making it expensive.
What needs improvement with Dataiku Data Science Studio?
Dataiku's pricing is very high, and commercial transparency is a challenge. Support is also an area needing improvement. More features like LLM security, holographic encryption, and enhanced GPU in...
What is your primary use case for Dataiku Data Science Studio?
My primary use case for Dataiku ( /products/dataiku-reviews ) is for data science, Gen ( /products/gen-reviews ) AI, and data science applications. Our AGN team also uses it for various purposes.
 

Comparisons

 

Also Known As

AWS SageMaker, SageMaker
Dataiku DSS
 

Overview

 

Sample Customers

DigitalGlobe, Thomson Reuters Center for AI and Cognitive Computing, Hotels.com, GE Healthcare, Tinder, Intuit
BGL BNP Paribas, Dentsu Aegis, Link Mobility Group, AramisAuto
Find out what your peers are saying about Amazon SageMaker vs. Dataiku and other solutions. Updated: March 2025.
845,406 professionals have used our research since 2012.