Try our new research platform with insights from 80,000+ expert users

Cloudera Data Science Workbench vs Databricks comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Cloudera Data Science Workb...
Ranking in Data Science Platforms
22nd
Average Rating
7.0
Reviews Sentiment
6.9
Number of Reviews
2
Ranking in other categories
No ranking in other categories
Databricks
Ranking in Data Science Platforms
1st
Average Rating
8.2
Reviews Sentiment
7.0
Number of Reviews
92
Ranking in other categories
Cloud Data Warehouse (9th), Data Management Platforms (DMP) (5th), Streaming Analytics (1st)
 

Mindshare comparison

As of January 2026, in the Data Science Platforms category, the mindshare of Cloudera Data Science Workbench is 1.6%, up from 1.4% compared to the previous year. The mindshare of Databricks is 9.6%, down from 18.9% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms Market Share Distribution
ProductMarket Share (%)
Databricks9.6%
Cloudera Data Science Workbench1.6%
Other88.8%
Data Science Platforms
 

Featured Reviews

Ismail Peer - PeerSpot reviewer
Program Management Lead Advisor at Unionbank Philippines
Useful for data science modeling but improvement is needed in MLOps and pricing
If you don't configure CDSW well, then it might be not useful for you. Deploying the tool can vary in complexity, but most of the time, it's relatively simple and straightforward. Triggering a job from data to production is easy, as the platform automates the deployment process. However, ensuring optimal resource allocation is essential for smooth operations.
SimonRobinson - PeerSpot reviewer
Governance And Engagement Lead
Improved data governance has enabled sensitive data tracking but cost management still needs work
I believe we could improve Databricks integration with cloud service providers. The impact of our current integration has not been particularly good, and it's becoming very expensive for us. The inefficiencies in our implementation, such as not shutting down warehouses when they're not in use or reserving the right number of credits, have led to increased costs. We made several beginner mistakes, such as not taking advantage of incremental loading and running overly complicated queries all the time. We should be using ETL tools to help us instead of doing it directly in Databricks. We need more experienced professionals to manage Databricks effectively, as it's not as forgiving as other platforms such as Snowflake. I think introducing customer repositories would facilitate easier implementation with Databricks.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"I appreciate CDSW's ability to logically segregate environments, such as data, DR, and production, ensuring they don't interfere with each other. The deployment of machine learning is fast and easy to manage. Its API calls are also fast."
"The Cloudera Data Science Workbench is customizable and easy to use."
"What I like about Databricks is that it's one of the most popular platforms that give access to folks who are trying not just to do exploratory work on the data but also go ahead and build advanced modeling and machine learning on top of that."
"A very valuable feature is the data processing, and the solution is specifically good at using the Spark ecosystem."
"The solution is very easy to use."
"The built-in optimization recommendations halved the speed of queries and allowed us to reach decision points and deliver insights very quickly."
"Databricks provides a consistent interface for data engineers to work with data in a consistent language on a single integrated platform for ingesting, processing, and serving data to the end user."
"Databricks' Lakehouse architecture has been most useful for us. The data governance has been absolutely efficient in between other kinds of solutions."
"Easy to use and requires minimal coding and customizations."
"Specifically for data science and data analytics purposes, it can handle large amounts of data in less time. I can compare it with Teradata. If a job takes five hours with Teradata databases, Databricks can complete it in around three to three and a half hours."
 

Cons

"The tool's MLOps is not good. It's pricing also needs to improve."
"Running this solution requires a minimum of 12GB to 16GB of RAM."
"The integration of data could be a bit better."
"Some of the error messages that we receive are too vague, saying things like "unknown exception", and these should be improved to make it easier for developers to debug problems."
"Databricks is an analytics platform. It should offer more data science. It should have more features for data scientists to work with."
"The initial setup is difficult."
"The initial setup of Databricks could be complex."
"CI/CD needs additional leverage and support."
"In the next release, I would like to see more optimization features."
"The pricing of Databricks could be cheaper."
 

Pricing and Cost Advice

"The product is expensive."
"Licensing on site I would counsel against, as on-site hardware issues tend to really delay and slow down delivery."
"I would rate Databricks' pricing seven out of ten."
"I'm not involved in the financing, but I can say that the solution seemed reasonably priced compared to the competitors. Similar products are usually in the same price range. With five being affordable and one being expensive, I would rate Databricks a four out of five."
"The licensing costs of Databricks depend on how many licenses we need, depending on which Databricks provides a lot of discounts."
"The pricing depends on the usage itself."
"The price of Databricks is reasonable compared to other solutions."
"We only pay for the Azure compute behind the solution."
"I am based in South Africa, where it is expensive adapting to the cloud, and then there is the price for the tool itself."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
881,082 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
36%
Manufacturing Company
9%
Healthcare Company
7%
Computer Software Company
5%
Financial Services Firm
18%
Manufacturing Company
9%
Computer Software Company
9%
Healthcare Company
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
By reviewers
Company SizeCount
Small Business25
Midsize Enterprise12
Large Enterprise56
 

Questions from the Community

What do you like most about Cloudera Data Science Workbench?
I appreciate CDSW's ability to logically segregate environments, such as data, DR, and production, ensuring they don't interfere with each other. The deployment of machine learning is fast and easy...
What needs improvement with Cloudera Data Science Workbench?
The tool's MLOps is not good. It's pricing also needs to improve.
What is your primary use case for Cloudera Data Science Workbench?
We have different use cases. Our banking use case uses machine learning to identify customer life events and recommend the best-suited card products. These machine-learning models are deployed in o...
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
Which would you choose - Databricks or Azure Stream Analytics?
Databricks is an easy-to-set-up and versatile tool for data management, analysis, and business analytics. For analytics teams that have to interpret data to further the business goals of their orga...
 

Also Known As

CDSW
Databricks Unified Analytics, Databricks Unified Analytics Platform, Redash
 

Overview

 

Sample Customers

IQVIA, Rush University Medical Center, Western Union
Elsevier, MyFitnessPal, Sharethrough, Automatic Labs, Celtra, Radius Intelligence, Yesware
Find out what your peers are saying about Cloudera Data Science Workbench vs. Databricks and other solutions. Updated: December 2025.
881,082 professionals have used our research since 2012.