Try our new research platform with insights from 80,000+ expert users

Cloudera Data Science Workbench vs H2O.ai comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Cloudera Data Science Workb...
Ranking in Data Science Platforms
24th
Average Rating
7.0
Reviews Sentiment
6.9
Number of Reviews
2
Ranking in other categories
No ranking in other categories
H2O.ai
Ranking in Data Science Platforms
16th
Average Rating
7.6
Reviews Sentiment
6.8
Number of Reviews
10
Ranking in other categories
Model Monitoring (4th)
 

Mindshare comparison

As of August 2025, in the Data Science Platforms category, the mindshare of Cloudera Data Science Workbench is 1.3%, down from 1.6% compared to the previous year. The mindshare of H2O.ai is 1.8%, up from 1.4% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

Ismail Peer - PeerSpot reviewer
Useful for data science modeling but improvement is needed in MLOps and pricing
If you don't configure CDSW well, then it might be not useful for you. Deploying the tool can vary in complexity, but most of the time, it's relatively simple and straightforward. Triggering a job from data to production is easy, as the platform automates the deployment process. However, ensuring optimal resource allocation is essential for smooth operations.
Abhay Vyas - PeerSpot reviewer
Advanced model selection and time efficiency meet needs but documentation and fusion model support are needed
Even though H2O.ai provides the best model, there could be improvements in certain areas. For instance, when you want to work with fusion models, H2O.ai doesn't provide that kind of information. Currently, it provides individual models as outcomes. If it could offer combinations of models, such as suggesting using XGBoost along with SVM for wonderful results, that fusion model concept would be a good option for developers. I hope the fusion model concept will be implemented soon in H2O.ai. Regarding documentation, I faced challenges as I didn't see much information from a documentation perspective. When I was trying to learn how to train and test H2O.ai, there was limited documentation available. If they could improve in that area, it would be really beneficial.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"I appreciate CDSW's ability to logically segregate environments, such as data, DR, and production, ensuring they don't interfere with each other. The deployment of machine learning is fast and easy to manage. Its API calls are also fast."
"The Cloudera Data Science Workbench is customizable and easy to use."
"One of the most interesting features of the product is their driverless component. The driverless component allows you to test several different algorithms along with navigating you through choosing the best algorithm."
"I have utilized the AutoML feature in H2O.ai, which is one of the very powerful features where you don't need to worry about which algorithm is best for your model."
"Fast training, memory-efficient DataFrame manipulation, well-documented, easy-to-use algorithms, ability to integrate with enterprise Java apps (through POJO/MOJO) are the main reasons why we switched from Spark to H2O."
"H2O.ai provides better flexibility where I could examine more models and obtain results, and based on these results, I could make the next set of decisions."
"The ease of use in connecting to our cluster machines."
"AutoML helps in hands-free initial evaluations of efficiency/accuracy of ML algorithms."
"The most valuable features are the machine learning tools, the support for Jupyter Notebooks, and the collaboration that allows you to share it across people."
"The most valuable feature of H2O.ai is that it is plug-and-play."
 

Cons

"Running this solution requires a minimum of 12GB to 16GB of RAM."
"The tool's MLOps is not good. It's pricing also needs to improve."
"The model management features could be improved."
"It needs a drag and drop GUI like KNIME, for easy access to and visibility of workflows."
"It lacks the data manipulation capabilities of R and Pandas DataFrames. We would kill for dplyr offloading H2O."
"I would like to see more features related to deployment."
"One improvement I would like to see in H2O.ai is regarding the integration capabilities with different data sources, as I've seen platforms like DataIQ and DataBricks offer great integration with various data sources."
"The interpretability module has room for improvement. Also, it needs to improve its ability to integrate with other systems, like SageMaker, and the overall integration capability."
"H2O.ai can improve in areas like multimodal support and prompt engineering."
"On the topic of model training and model governance, this solution cannot handle ten or twelve models running at the same time."
 

Pricing and Cost Advice

"The product is expensive."
"We have seen significant ROI where we were able to use the product in certain key projects and could automate a lot of processes. We were even able to reduce staff."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
865,295 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
35%
Manufacturing Company
9%
Healthcare Company
8%
Computer Software Company
8%
Computer Software Company
17%
Financial Services Firm
17%
Manufacturing Company
9%
Educational Organization
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

What do you like most about Cloudera Data Science Workbench?
I appreciate CDSW's ability to logically segregate environments, such as data, DR, and production, ensuring they don't interfere with each other. The deployment of machine learning is fast and easy...
What needs improvement with Cloudera Data Science Workbench?
The tool's MLOps is not good. It's pricing also needs to improve.
What is your primary use case for Cloudera Data Science Workbench?
We have different use cases. Our banking use case uses machine learning to identify customer life events and recommend the best-suited card products. These machine-learning models are deployed in o...
What needs improvement with H2O.ai?
One improvement I would like to see in H2O.ai is regarding the integration capabilities with different data sources, as I've seen platforms like DataIQ and DataBricks offer great integration with v...
What is your primary use case for H2O.ai?
Normally, I use H2O.ai for my machine learning tasks, and to give an example, some of the models that I've created using H2O.ai are taxi demand forecasting and a scoring model for leads. Most of my...
What advice do you have for others considering H2O.ai?
I would rate the technical support a nine. For organizations considering H2O.ai, my recommendations include appreciating it as a great and flexible tool for machine learning tasks without incurring...
 

Also Known As

CDSW
No data available
 

Overview

 

Sample Customers

IQVIA, Rush University Medical Center, Western Union
poder.io, Stanley Black & Decker, G5, PWC, Comcast, Cisco
Find out what your peers are saying about Cloudera Data Science Workbench vs. H2O.ai and other solutions. Updated: July 2025.
865,295 professionals have used our research since 2012.