Try our new research platform with insights from 80,000+ expert users

H2O.ai vs KNIME Business Hub comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Jul 27, 2025

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

H2O.ai
Ranking in Data Science Platforms
18th
Average Rating
7.6
Reviews Sentiment
6.8
Number of Reviews
10
Ranking in other categories
Model Monitoring (4th)
KNIME Business Hub
Ranking in Data Science Platforms
3rd
Average Rating
8.2
Reviews Sentiment
7.1
Number of Reviews
60
Ranking in other categories
Data Mining (1st)
 

Mindshare comparison

As of October 2025, in the Data Science Platforms category, the mindshare of H2O.ai is 1.7%, up from 1.5% compared to the previous year. The mindshare of KNIME Business Hub is 11.9%, up from 10.8% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms Market Share Distribution
ProductMarket Share (%)
KNIME Business Hub11.9%
H2O.ai1.7%
Other86.4%
Data Science Platforms
 

Featured Reviews

Abhay Vyas - PeerSpot reviewer
Advanced model selection and time efficiency meet needs but documentation and fusion model support are needed
Even though H2O.ai provides the best model, there could be improvements in certain areas. For instance, when you want to work with fusion models, H2O.ai doesn't provide that kind of information. Currently, it provides individual models as outcomes. If it could offer combinations of models, such as suggesting using XGBoost along with SVM for wonderful results, that fusion model concept would be a good option for developers. I hope the fusion model concept will be implemented soon in H2O.ai. Regarding documentation, I faced challenges as I didn't see much information from a documentation perspective. When I was trying to learn how to train and test H2O.ai, there was limited documentation available. If they could improve in that area, it would be really beneficial.
Laurence Moseley - PeerSpot reviewer
Has a drag-and-drop interface and AI capabilities
It's difficult to pinpoint one single feature because KNIME has so many. For starters, it's very easy to learn. You can get started with just a one-hour video. The drag-and-drop interface makes it user-friendly. For example, if you want to read an Excel file, drag the "read Excel file" node from the repository, configure it by specifying the file location, and run it. This gives you a table with all your data. Next, you can clean the data by handling missing values, selecting specific columns you want to analyze, and then proceeding with your analysis, such as regression or correlation. KNIME has over 4,500 nodes available for download. In addition, KNIME offers various extensions. For instance, the text processing extension allows you to process text data efficiently. It's more powerful than other tools like NVivo and Palantir. KNIME also has AI capabilities. If you're unsure about the next step, the AI assistant can suggest the most frequently used nodes based on your previous work. Another valuable feature is the integration with Python. If you need to perform a task that requires Python, you can simply add a Python node, write the necessary code,

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"AutoML helps in hands-free initial evaluations of efficiency/accuracy of ML algorithms."
"The most valuable features are the machine learning tools, the support for Jupyter Notebooks, and the collaboration that allows you to share it across people."
"It is helpful, intuitive, and easy to use. The learning curve is not too steep."
"One of the most interesting features of the product is their driverless component. The driverless component allows you to test several different algorithms along with navigating you through choosing the best algorithm."
"The ease of use in connecting to our cluster machines."
"The most valuable feature of H2O.ai is that it is plug-and-play."
"H2O.ai provides better flexibility where I could examine more models and obtain results, and based on these results, I could make the next set of decisions."
"I have utilized the AutoML feature in H2O.ai, which is one of the very powerful features where you don't need to worry about which algorithm is best for your model."
"The product is user-friendly."
"I was able to apply basic algorithms through just dragging and dropping."
"I am impressed by the modularity and reusability in KNIME, especially the ability to make small adjustments to object configurations."
"The tool's analytic capabilities are good."
"Valuable features include visual workflow creation, workflow variables (parameterisation), automatic caching of all intermediate data sets in the workflow, scheduling with the server."
"The most useful features are the readily available extensions that speed up the work."
"The most valuable features of KNIME are its ability to convert your sub-workflow into a node. For example, the workflow has many individual native nodes that can be converted into a single node. This representation has simplified my workflow to a great extent. I can present my workflow in a very compact way."
"This open-source product can compete with category leaders in ELT software."
 

Cons

"It lacks the data manipulation capabilities of R and Pandas DataFrames. We would kill for dplyr offloading H2O."
"I would like to see more features related to deployment."
"Referring to bullet-3 as well, H2O DataFrame manipulation capabilities are too primitive."
"The model management features could be improved."
"It needs a drag and drop GUI like KNIME, for easy access to and visibility of workflows."
"On the topic of model training and model governance, this solution cannot handle ten or twelve models running at the same time."
"One improvement I would like to see in H2O.ai is regarding the integration capabilities with different data sources, as I've seen platforms like DataIQ and DataBricks offer great integration with various data sources."
"H2O.ai can improve in areas like multimodal support and prompt engineering."
"It needs more examples, use cases, and MOOC to learn, especially with respect to the algorithms and how to practically create a flow from end-to-end."
"There should be better documentation and the steps should be easier."
"The predefined workflows could use a bit of improvement."
"The dynamic column name feature could be improved. When attempting to automate processes involving columns, such as with companies, it becomes difficult to achieve the same result when we make changes."
"I would like to see better web scraping because every time I tried, it was not up to par, although you can use Python script."
"KNIME can improve by adding more automation tools in the query, similar to UiPath or Blue Prism. It would make the data collection and cleanup duties more versatile."
"KNIME needs to provide more documentation and training materials, including webinars or online seminars."
"They could add more detailed examples of the functionality of every node, how it works and how we can use it, to make things easier at the beginning."
 

Pricing and Cost Advice

"We have seen significant ROI where we were able to use the product in certain key projects and could automate a lot of processes. We were even able to reduce staff."
"I use the open-source version."
"The price for Knime is okay."
"It's an open-source solution."
"For beginners, the free desktop version is very attractive, but the full server version can be more expensive. I have only used the free version and it offers a fair pricing system. I have been promoting it to others without any compensation or request from the company, simply because I am enthusiastic about it. I am not aware of the pricing for the server version, but it seems to be widely used."
"The price of KNIME is quite reasonable and the designer tool can be used free of charge."
"KNIME is free as a stand-alone desktop-based platform but if you want to get a KNIME server then you can find the cost on their website."
"KNIME Business Hub is expensive for small companies."
"At this time, I am using the free version of Knime."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
868,706 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
16%
Computer Software Company
14%
Manufacturing Company
9%
Educational Organization
7%
Financial Services Firm
11%
Manufacturing Company
10%
University
9%
Computer Software Company
8%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business2
Midsize Enterprise3
Large Enterprise7
By reviewers
Company SizeCount
Small Business20
Midsize Enterprise16
Large Enterprise29
 

Questions from the Community

What needs improvement with H2O.ai?
Even though H2O.ai provides the best model, there could be improvements in certain areas. For instance, when you want to work with fusion models, H2O.ai doesn't provide that kind of information. Cu...
What is your primary use case for H2O.ai?
I used H2O.ai on several POCs for my previous company, and it helped me find the best model. I needed to determine which model was performing better for job portal data. At that time, H2O.ai was ev...
What advice do you have for others considering H2O.ai?
For larger datasets, model computation or model training and testing typically takes considerable time because with individual models, you need to train and test each one. With H2O.ai, these concer...
What do you like most about KNIME?
Since KNIME is a no-code platform, it is easy to work with.
What is your experience regarding pricing and costs for KNIME?
I rate the product’s pricing a seven out of ten, where one is cheap and ten is expensive.
What needs improvement with KNIME?
I have seen the potential to interact with Python, which is currently a bit limited. I am interested in the newer version, 5.4, when it becomes available. The machine learning and profileration asp...
 

Also Known As

No data available
KNIME Analytics Platform
 

Overview

 

Sample Customers

poder.io, Stanley Black & Decker, G5, PWC, Comcast, Cisco
Infocom Corporation, Dymatrix Consulting Group, Soluzione Informatiche, MMI Agency, Estanislao Training and Solutions, Vialis AG
Find out what your peers are saying about H2O.ai vs. KNIME Business Hub and other solutions. Updated: September 2025.
868,706 professionals have used our research since 2012.