Try our new research platform with insights from 80,000+ expert users

H2O.ai vs Microsoft Azure Machine Learning Studio comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

H2O.ai
Ranking in Data Science Platforms
15th
Average Rating
7.6
Reviews Sentiment
6.8
Number of Reviews
10
Ranking in other categories
Model Monitoring (4th)
Microsoft Azure Machine Lea...
Ranking in Data Science Platforms
5th
Average Rating
7.8
Reviews Sentiment
7.1
Number of Reviews
62
Ranking in other categories
AI Development Platforms (5th)
 

Mindshare comparison

As of January 2026, in the Data Science Platforms category, the mindshare of H2O.ai is 1.9%, up from 1.5% compared to the previous year. The mindshare of Microsoft Azure Machine Learning Studio is 3.7%, down from 5.7% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms Market Share Distribution
ProductMarket Share (%)
Microsoft Azure Machine Learning Studio3.7%
H2O.ai1.9%
Other94.4%
Data Science Platforms
 

Featured Reviews

MA
Senior Manager - AI at Shamal Holding
Have improved machine learning model automation and reduced decision-making time
One improvement I would like to see in H2O.ai is regarding the integration capabilities with different data sources, as I've seen platforms like DataIQ and DataBricks offer great integration with various data sources. H2O.ai could benefit from enhanced integration with real-time versus offline data sources, as well as improvements in productionalization solutions, including better deployment options on platforms like Azure and CI/CD integration. One of the features I'd like to see included in upcoming releases of H2O.ai pertains to the growing trend of Generative AI, with applications for LLM-based models and vector databases. I would like to see a solution similar to Azure AI Foundry, which provides the flexibility to integrate different LLMs into applications, including H2O-GPT and other models for varied applications.
reviewer2722962 - PeerSpot reviewer
Data Scientist
Platform accelerates model development, enhances collaboration, and offers efficient deployment
The best features Microsoft Azure Machine Learning Studio offers include deep integration with Python notebooks and Azure Data Lake, which allows me to import external data, and through the pipeline, I can build my models, performing what is called data injection for my model building, making that deep integration quite interesting to use. Microsoft Azure Machine Learning Studio is a powerful platform for those already in the Azure ecosystem because it allows for scalability and provides a good environment for reproducibility, as well as collaboration tools, all designed and packaged in one place, which makes it outstanding. Microsoft Azure Machine Learning Studio has positively impacted my organization by reducing our project delivery times and increasing the pace at which we work, allowing us to focus on other more important tasks. Using Microsoft Azure Machine Learning Studio has reduced our model development time from approximately four hours to about two hours.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"H2O.ai provides better flexibility where I could examine more models and obtain results, and based on these results, I could make the next set of decisions."
"The most valuable features are the machine learning tools, the support for Jupyter Notebooks, and the collaboration that allows you to share it across people."
"It is helpful, intuitive, and easy to use. The learning curve is not too steep."
"AutoML helps in hands-free initial evaluations of efficiency/accuracy of ML algorithms."
"One of the most interesting features of the product is their driverless component. The driverless component allows you to test several different algorithms along with navigating you through choosing the best algorithm."
"The ease of use in connecting to our cluster machines."
"I have utilized the AutoML feature in H2O.ai, which is one of the very powerful features where you don't need to worry about which algorithm is best for your model."
"Fast training, memory-efficient DataFrame manipulation, well-documented, easy-to-use algorithms, ability to integrate with enterprise Java apps (through POJO/MOJO) are the main reasons why we switched from Spark to H2O."
"Split dataset, variety of algorithms, visualizing the data, and drag and drop capability are the features I appreciate most."
"The most valuable feature of the solution is the availability of ChatGPT in the solution."
"The product's standout feature is a robust multi-file network with limited availability."
"The notebook feature allows you to write inquiries and create dashboards. These dashboards can integrate with multiple databases, such as Excel, HANA, or SQL Server."
"It's a great option if you are fairly new and don't want to write too much code."
"One of the notable advantages is that it offers both a visual designer, which is user-friendly, and an advanced coding option."
"ML Studio is very easy to maintain."
"I like that it's totally easy to use. They have an AutoML solution, and their machine learning model is highly accurate. They also have a feature that can explain the machine learning model. This makes it easy for me to understand that model."
 

Cons

"The model management features could be improved."
"Referring to bullet-3 as well, H2O DataFrame manipulation capabilities are too primitive."
"It needs a drag and drop GUI like KNIME, for easy access to and visibility of workflows."
"I would like to see more features related to deployment."
"The interpretability module has room for improvement. Also, it needs to improve its ability to integrate with other systems, like SageMaker, and the overall integration capability."
"One improvement I would like to see in H2O.ai is regarding the integration capabilities with different data sources, as I've seen platforms like DataIQ and DataBricks offer great integration with various data sources."
"On the topic of model training and model governance, this solution cannot handle ten or twelve models running at the same time."
"H2O.ai can improve in areas like multimodal support and prompt engineering."
"Integration with social media would be a valuable enhancement."
"There's room for improvement in terms of binding the integration with Azure DevOps."
"One area where Azure Machine Learning Studio could improve is its user interface structure."
"The regulatory requirements of the product need improvement."
"In terms of improvement, I'd like to have more ability to construct and understand the detailed impact of the variables on the model. Their algorithms are very powerful and they explain overall the net contribution of each of the variables to the solution. In terms of being able to say to people "If you did this, you'll get this much more improvement" it wasn't great."
"The interface is a bit overloaded."
"Microsoft Azure Machine Learning Studio worked okay for me, so right now, I don't have any room for improvement in mind for it. What I'd like added to Microsoft Azure Machine Learning Studio in its next version is a categorization for use cases or a template that makes the use cases simple to map out, for example, for healthcare, medical, or finance use cases, etc. This would be very helpful for users of Microsoft Azure Machine Learning Studio, especially for beginners."
"Microsoft Azure Machine Learning Studio could improve by adding pixel or image analysis. This is a priority for me."
 

Pricing and Cost Advice

"We have seen significant ROI where we were able to use the product in certain key projects and could automate a lot of processes. We were even able to reduce staff."
"There is a lack of certainty with the solution's pricing."
"ML Studio's pricing becomes a numbers game."
"The platform's price is low."
"On a scale from one to ten, with ten being overpriced, I would rate the price of this solution at six."
"Last year, we paid 60,000 for Microsoft Azure Machine Learning Studio in our department."
"I rate the solution's pricing a four on a scale of one to ten, where one is cheap, and ten is expensive."
"In terms of pricing, for any cloud solution, you should know the tricks of the trade and how to use it, otherwise, you'll end up paying a lot of money irrespective of the cloud provider, so at least for Microsoft Azure Machine Learning Studio pricing versus AWS, I would rate it three out of five, with one being the most expensive, and five being the cheapest. It could be cheaper, but you also have to be careful when choosing the plans, for example, consider the architecture and a lot of other factors before choosing your plan, if you don't want to end up paying more. If your cloud provider has an optimizer that seems to be available in every provider, that would keep alerting you in terms of resources not being used as much, then that would help you with budgeting."
"I rate the product price as a nine on a scale of one to ten, where ten means it is very expensive."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
881,082 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
14%
Computer Software Company
11%
Educational Organization
7%
Manufacturing Company
7%
Financial Services Firm
11%
Manufacturing Company
9%
Computer Software Company
9%
Performing Arts
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business2
Midsize Enterprise3
Large Enterprise7
By reviewers
Company SizeCount
Small Business23
Midsize Enterprise6
Large Enterprise30
 

Questions from the Community

What needs improvement with H2O.ai?
Even though H2O.ai provides the best model, there could be improvements in certain areas. For instance, when you want to work with fusion models, H2O.ai doesn't provide that kind of information. Cu...
What is your primary use case for H2O.ai?
I used H2O.ai on several POCs for my previous company, and it helped me find the best model. I needed to determine which model was performing better for job portal data. At that time, H2O.ai was ev...
What advice do you have for others considering H2O.ai?
For larger datasets, model computation or model training and testing typically takes considerable time because with individual models, you need to train and test each one. With H2O.ai, these concer...
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
What do you like most about Microsoft Azure Machine Learning Studio?
The learning curve is very low. Operationalizing the model is also very easy within the Azure ecosystem.
What is your experience regarding pricing and costs for Microsoft Azure Machine Learning Studio?
The pricing for Microsoft Azure Machine Learning Studio is reasonable since it's pay as you go, meaning it won't cost excessively unless specific resources are used.
 

Also Known As

No data available
Azure Machine Learning, MS Azure Machine Learning Studio
 

Overview

 

Sample Customers

poder.io, Stanley Black & Decker, G5, PWC, Comcast, Cisco
Walgreens Boots Alliance, Schneider Electric, BP
Find out what your peers are saying about H2O.ai vs. Microsoft Azure Machine Learning Studio and other solutions. Updated: December 2025.
881,082 professionals have used our research since 2012.