Try our new research platform with insights from 80,000+ expert users

Microsoft Azure Machine Learning Studio vs TensorFlow comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Jan 12, 2025

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Microsoft Azure Machine Lea...
Ranking in AI Development Platforms
3rd
Average Rating
7.6
Reviews Sentiment
7.0
Number of Reviews
61
Ranking in other categories
Data Science Platforms (4th)
TensorFlow
Ranking in AI Development Platforms
6th
Average Rating
8.8
Reviews Sentiment
7.4
Number of Reviews
20
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of April 2025, in the AI Development Platforms category, the mindshare of Microsoft Azure Machine Learning Studio is 7.3%, down from 13.7% compared to the previous year. The mindshare of TensorFlow is 3.8%, down from 7.2% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms
 

Featured Reviews

Takayuki Umehara - PeerSpot reviewer
Streamlined workflows with drag and drop convenience but needs enhancements in AI
I use Machine Learning Studio for system reselling and integration Machine Learning Studio is easy to use, with a significant feature being the drag and drop interface that enhances workflow without any complaints. It provides a return on investment and cost savings, proving beneficial for…
Ashish Upadhyay - PeerSpot reviewer
A robust tools for model visualization and debugging with superior scalability and stability, and an intuitive user-friendly interface
The one feature we find most valuable at our company is its robust and flexible machine-learning capabilities. It empowers us to seamlessly create and deploy machine learning models, offering a versatile solution for implementing sophisticated environments and various types of AI solutions. The ability to develop and fine-tune models, such as risk assessment for detection and market protection, as well as the creation of recommendation systems, is paramount. This versatility extends to providing personalized identity-relevant applications for our enterprise clients, delivering valuable insights to the market. Its exceptional support for deep learning and its efficient resource utilization enable us to undertake complex financial and data analyses. The flexibility it provides is crucial for meeting industrial requirements and crafting solutions tailored to our client's specific needs.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"It's good for citizen data scientists, but also, other people can use Python or .NET code."
"The AutoML is helpful when you're starting to explore the problem that you're trying to solve."
"I find Microsoft Azure Machine Learning Studio advantageous because it allows integration with Titan Scratch and offers an easy-to-use drag-and-drop menu for developing machine learning models."
"What I like best about Microsoft Azure Machine Learning Studio is that it's a straightforward tool and it's easy to use. Another valuable feature of the tool is AutoML which lets you get better metrics to train the model right and with good accuracy. The AutoML feature allows you to simply put in your data, and it'll pre-process and create a more accurate model for you. You don't have to do anything because AutoML in Microsoft Azure Machine Learning Studio will take care of it."
"MLS allows me to set up data experiments by running through various regression and other machine learning algorithms, with different data cleaning and treatment tools. All of this can be achieved via drag and drop, and a few clicks of the mouse."
"The visualizations are great. It makes it very easy to understand which model is working and why."
"Overall, I rate Microsoft Azure Machine Learning Studio a seven out of ten."
"The platform as a service provides user-friendly instruments, making the experience easy."
"The most valuable features are the frameworks and the functionality to work with different data, even when we have a certain quantity of data flowing."
"It empowers us to seamlessly create and deploy machine learning models, offering a versatile solution for implementing sophisticated environments and various types of AI solutions."
"TensorFlow is a framework that makes it really easy to use for deep learning."
"Google is behind TensorFlow, and they provide excellent documentation. It's very thorough and very helpful."
"TensorFlow is an efficient product for building neural networks."
"Optimization is very good in TensorFlow. There are many opportunities to do hyper-parameter training."
"It is open-source, and it is being worked on all the time. You don't have to pay all the big bucks like Azure and Databricks. You can just use your local machine with the open-source TensorFlow and create pretty good models."
"It is also totally Open-Source and free. Open-source applications are not good usually. but TensorFlow actually changed my view about it and I thought, "Look, Oh my God. This is an open-source application and it's as good as it could be." I learned that TensorFlow, by sharing their own knowledge and their own platform with other developers, it improved the lives of many people around the globe."
 

Cons

"We can create a label job, but we still have to use the Azure Machine Learning REST APIs, which are not yet supported in the Python SDK version 2."
"The regulatory requirements of the product need improvement."
"The price of the solution has room for improvement."
"As for the areas for improvement in Microsoft Azure Machine Learning Studio, I've provided feedback to Microsoft. My company is a Gold Partner of Microsoft, so I provided my feedback in another forum. Right now, it is the number of algorithms available in the designer that has to be improved, though I'm sure Microsoft does it regularly. When you take a use case approach, Microsoft has done that in a lot of places, but not on the Microsoft Azure Machine Learning Studio designer. When I say use case basis, I meant recommending a product or recommending similar products, so if Microsoft can list out use cases and give me a template, it will save me a lot of time and a lot of work because I don't have to scratch my head on which algorithm is better, and I can go with what's recommended by Microsoft. I'm sure that isn't a big task for the Microsoft team who must have seen thousands of use cases already, so out of that experience if the team can come up with a standard template, I'm sure it'll help a lot of organizations cut down on the development time, as well as going with the best industry-standard algorithms rather than experimenting with mine. What I'd like to see in the next version of Microsoft Azure Machine Learning Studio, apart from the use case template, is the improvement of the availability of libraries. Microsoft should also upgrade the Python versions because the old version of Python is still supported and it takes time for Microsoft to upgrade the support for Python. The pace of upgrading Python versions of Microsoft Azure Machine Learning Studio and making those libraries available should be sped up or increased."
"n the solution, there is the concept of workspaces, and there is no means to share the computing infrastructure across those workspaces."
"A problem that I encountered was that I had to pay for the model that I wanted to deploy and use on Azure Machine Learning, but there wasn't any option that that model can be used in the designer."
"If you want to be able to deploy your tools outside of Microsoft Azure, this is not the best choice."
"Enable creating ensemble models easier, adding more machine learning algorithms."
"I would love to have a user interface like a programming interface. You need to have a set of menus where you can put things together in a graphical interface. The complete automation of the integration of the modules would also be interesting. It’s more like plumbing as opposed to a fully automated environment."
"The solution is hard to integrate with the GPUs."
"There are a lot of problems, such as integrating our custom code. In my experience model tuning has been a bit difficult to edit and tune the graph model for best performance. We have to go into the model but we do not have a model viewer for quick access."
"It would be nice to have more pre-trained models that we can utilize within layers. I utilize a Mac, and I am unable to utilize AMD GPUs. That's something that I would definitely be like to be able to access within TensorFlow since most of it is with CUDA ML. This only matters for local machines because, in Azure, you can just access any GPU you want from the cloud. It doesn't really matter, but the clients that I work with don't have cloud accounts, or they don't want to utilize that or spend the money. They all see it as too expensive and want to know what they can do on their local machines."
"It doesn't allow for fast the proto-typing. So usually when we do proto-typing we will start with PyTorch and then once we have a good model that we trust, we convert it into TensorFlow. So definitely, TensorFlow is not very flexible."
"The process of creating models could be more user-friendly."
"It currently offers inbuilt functions, however, having the ability to implement custom libraries would enhance its usefulness for enterprise-level applications."
"For newcomers to the field, the learning curve can be steep, often requiring about a year of dedicated effort."
 

Pricing and Cost Advice

"The platform's price is low."
"From a developer's perspective, I find the price of this solution high."
"I would rate the pricing an eight out of ten, with ten being very expensive. Not very expensive, not very cheap."
"I rate the solution's pricing a four on a scale of one to ten, where one is cheap, and ten is expensive."
"There is a lack of certainty with the solution's pricing."
"When we got our first models and were ready for the user acceptance testing, our licensing fees were between €2,500 ($2,750 USD) and €3,000 ($3,300 USD) monthly."
"On a scale from one to ten, with ten being overpriced, I would rate the price of this solution at six."
"I am paying for it following a pay-as-you-go. So, the more I use it, the more it costs."
"I did not require a license for this solution. It a free open-source solution."
"It is open-source software. You don't have to pay all the big bucks like Azure and Databricks."
"TensorFlow is free."
"We are using the free version."
"It is an open-source solution, so anyone can use it free of charge."
"I think for learners to deploy a project, you can actually use TensorFlow for free. It's just amazing to have an open-source platform like TensorFlow to deploy your own project. Here in Russia no one really cares about licenses, as it is totally open source and free. My clients in the United States were also pleased to learn when they enquired, that licensing is free."
"The solution is free."
"I am using the open-source version of TensorFlow and it is free."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
845,040 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
13%
Computer Software Company
11%
Manufacturing Company
10%
Healthcare Company
7%
Manufacturing Company
14%
Computer Software Company
13%
University
9%
Educational Organization
8%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
What do you like most about Microsoft Azure Machine Learning Studio?
The learning curve is very low. Operationalizing the model is also very easy within the Azure ecosystem.
What is your experience regarding pricing and costs for Microsoft Azure Machine Learning Studio?
Pricing is considered to be top-segment and should be improved. I rate the pricing as three or four on a scale of one to ten in terms of affordability.
What do you like most about TensorFlow?
It empowers us to seamlessly create and deploy machine learning models, offering a versatile solution for implementing sophisticated environments and various types of AI solutions.
What is your experience regarding pricing and costs for TensorFlow?
I am not familiar with the pricing setup cost and licensing.
What needs improvement with TensorFlow?
Providing more control by allowing users to build custom functions would make TensorFlow a better option. It currently offers inbuilt functions, however, having the ability to implement custom libr...
 

Also Known As

Azure Machine Learning, MS Azure Machine Learning Studio
No data available
 

Overview

 

Sample Customers

Walgreens Boots Alliance, Schneider Electric, BP
Airbnb, NVIDIA, Twitter, Google, Dropbox, Intel, SAP, eBay, Uber, Coca-Cola, Qualcomm
Find out what your peers are saying about Microsoft Azure Machine Learning Studio vs. TensorFlow and other solutions. Updated: March 2025.
845,040 professionals have used our research since 2012.