Try our new research platform with insights from 80,000+ expert users

PyTorch vs TensorFlow comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 4, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

PyTorch
Ranking in AI Development Platforms
7th
Average Rating
8.6
Reviews Sentiment
7.2
Number of Reviews
13
Ranking in other categories
No ranking in other categories
TensorFlow
Ranking in AI Development Platforms
6th
Average Rating
8.8
Reviews Sentiment
7.4
Number of Reviews
20
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of May 2025, in the AI Development Platforms category, the mindshare of PyTorch is 1.5%, up from 1.3% compared to the previous year. The mindshare of TensorFlow is 3.8%, down from 6.7% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms
 

Featured Reviews

Rohan Sharma - PeerSpot reviewer
Enabled creation of innovative projects through developer-friendly features
The aspect I like most about PyTorch is that it is really developer-friendly. Developers can constantly create new things, and everyone around the world can use it for free because it's an open-source product. What I personally like is that PyTorch has enabled users to use Apple's M1 chip natively for GPU users. Unlike other libraries using CUDA, PyTorch utilizes Metal Performance Shaders (MPS) to enable GPU usage on M1 chips.
Ashish Upadhyay - PeerSpot reviewer
A robust tools for model visualization and debugging with superior scalability and stability, and an intuitive user-friendly interface
The one feature we find most valuable at our company is its robust and flexible machine-learning capabilities. It empowers us to seamlessly create and deploy machine learning models, offering a versatile solution for implementing sophisticated environments and various types of AI solutions. The ability to develop and fine-tune models, such as risk assessment for detection and market protection, as well as the creation of recommendation systems, is paramount. This versatility extends to providing personalized identity-relevant applications for our enterprise clients, delivering valuable insights to the market. Its exceptional support for deep learning and its efficient resource utilization enable us to undertake complex financial and data analyses. The flexibility it provides is crucial for meeting industrial requirements and crafting solutions tailored to our client's specific needs.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"I like PyTorch's scalability."
"The framework of the solution is valuable."
"The tool is very user-friendly."
"PyTorch is developer-friendly, allowing developers to continuously create new projects."
"It's been pretty scalable in terms of using multiple GPUs."
"The product's initial setup phase is easy."
"yTorch is gaining credibility in the research space, it's becoming easier to find examples of papers that use PyTorch. This is an advantage for someone who uses PyTorch primarily."
"It’s reliable, secure and user-friendly. It allows you to develop any AIML project efficiently. PySearch is the best option for developing any project in the AIML domain. The product is easy to install."
"It provides us with 35 features like patch normalization layers, and it is easy to implement using the Kras library when the Kaspersky flow is running behind it."
"TensorFlow provides Insights into both data and machine learning strategies."
"It is open-source, and it is being worked on all the time. You don't have to pay all the big bucks like Azure and Databricks. You can just use your local machine with the open-source TensorFlow and create pretty good models."
"TensorFlow is an efficient product for building neural networks."
"The most valuable features are the frameworks and the functionality to work with different data, even when we have a certain quantity of data flowing."
"I would rate the solution an eight out of ten. I am not a developer but more of an account manager. I can find what I want with TensorFlow. I haven’t contacted technical support for any issues. Since TensorFlow is vastly documented on the internet, I usually find some good websites where people exchange their views about the solution and apply that."
"It is easy to use and learn."
"It empowers us to seamlessly create and deploy machine learning models, offering a versatile solution for implementing sophisticated environments and various types of AI solutions."
 

Cons

"On the production side of things, having more frameworks would be helpful."
"There is not enough documentation about some methods and parameters. It is sometimes difficult to find information."
"I've had issues with stability when I use a lot of data and try out different combinations of modeling techniques."
"I do not have any complaints."
"I would like a model to be available. I think Google recently released a new version of EfficientNet. It's a really good classifier, and a PyTorch implementation would be nice."
"The product has certain shortcomings in the automation of machine learning."
"PyTorch needs improvement in working on ARM-based chips. They have unified memory for GPU and RAM, however, current GPUs used for processing are slow."
"PyTorch could make certain things more obvious. Even though it does make things like defining loss functions and calculating gradients in backward propagation clear, these concepts may confuse beginners. We find that it's kind of problematic. Despite having methods called on loss functions during backward passes, the oral documentation for beginners is quite complex."
"There are a lot of problems, such as integrating our custom code. In my experience model tuning has been a bit difficult to edit and tune the graph model for best performance. We have to go into the model but we do not have a model viewer for quick access."
"I know this is out of the scope of TensorFlow, however, every time I've sent a request, I had to renew the model into RAM and they didn't make that prediction or inference. This makes the point for the request that much longer. If they could provide anything to help in this part, it will be very great."
"Enhancements could include increasing use cases and improving the accuracy of previously built models in TensorFlow. For instance, when we run certain models, the computing power of laptops becomes high."
"For newcomers to the field, the learning curve can be steep, often requiring about a year of dedicated effort."
"Personally, I find it to be a bit too much AI-oriented."
"TensorFlow deep learning takes a lot of computation power. The more systems you can use, the easier it is. That's a good ability, if you can make a system run immediately at the same time on the same task, it's much faster rather than you having one system running which is slower. Running systems in parallel is a complex situation, but it can improve. There is a lot of work involved."
"We encountered version mismatch errors while using the product."
"It currently offers inbuilt functions, however, having the ability to implement custom libraries would enhance its usefulness for enterprise-level applications."
 

Pricing and Cost Advice

"It is free."
"PyTorch is open-sourced."
"PyTorch is open source."
"PyTorch is an open-source solution."
"The solution is affordable."
"It is free."
"We are using the free version."
"It is open-source software. You don't have to pay all the big bucks like Azure and Databricks."
"I rate TensorFlow's pricing a five out of ten."
"I did not require a license for this solution. It a free open-source solution."
"I am using the open-source version of TensorFlow and it is free."
"It is an open-source solution, so anyone can use it free of charge."
"I think for learners to deploy a project, you can actually use TensorFlow for free. It's just amazing to have an open-source platform like TensorFlow to deploy your own project. Here in Russia no one really cares about licenses, as it is totally open source and free. My clients in the United States were also pleased to learn when they enquired, that licensing is free."
"The solution is free."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
851,604 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Manufacturing Company
31%
Financial Services Firm
9%
Computer Software Company
8%
Comms Service Provider
8%
Manufacturing Company
14%
Computer Software Company
13%
University
9%
Financial Services Firm
8%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What is your experience regarding pricing and costs for PyTorch?
I haven't gone for a paid plan yet. I've just been using the free trial or open-source version.
What needs improvement with PyTorch?
PyTorch needs improvement in working on ARM-based chips. Although they have unified memory for GPU and RAM, they are unable to utilize these GPUs for processing efficiently. They take so much time....
What do you like most about TensorFlow?
It empowers us to seamlessly create and deploy machine learning models, offering a versatile solution for implementing sophisticated environments and various types of AI solutions.
What is your experience regarding pricing and costs for TensorFlow?
I am not familiar with the pricing setup cost and licensing.
What needs improvement with TensorFlow?
Providing more control by allowing users to build custom functions would make TensorFlow a better option. It currently offers inbuilt functions, however, having the ability to implement custom libr...
 

Comparisons

 

Overview

 

Sample Customers

Information Not Available
Airbnb, NVIDIA, Twitter, Google, Dropbox, Intel, SAP, eBay, Uber, Coca-Cola, Qualcomm
Find out what your peers are saying about PyTorch vs. TensorFlow and other solutions. Updated: April 2025.
851,604 professionals have used our research since 2012.