Try our new research platform with insights from 80,000+ expert users

PyTorch vs TensorFlow comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 4, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

PyTorch
Ranking in AI Development Platforms
7th
Average Rating
8.6
Reviews Sentiment
7.2
Number of Reviews
13
Ranking in other categories
No ranking in other categories
TensorFlow
Ranking in AI Development Platforms
6th
Average Rating
8.8
Reviews Sentiment
7.4
Number of Reviews
19
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of July 2025, in the AI Development Platforms category, the mindshare of PyTorch is 2.4%, up from 1.2% compared to the previous year. The mindshare of TensorFlow is 4.4%, down from 6.0% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms
 

Featured Reviews

Rohan Sharma - PeerSpot reviewer
Enabled creation of innovative projects through developer-friendly features
The aspect I like most about PyTorch is that it is really developer-friendly. Developers can constantly create new things, and everyone around the world can use it for free because it's an open-source product. What I personally like is that PyTorch has enabled users to use Apple's M1 chip natively for GPU users. Unlike other libraries using CUDA, PyTorch utilizes Metal Performance Shaders (MPS) to enable GPU usage on M1 chips.
Dan Bryant - PeerSpot reviewer
A strong solution for providing insight into machine learning strategies
I'm not a professional with machine learning. Early on, I was working with data scientists and built a platform for some old-school data scientists to turn around their models faster, and they were focused on electric prices. Based on that experience and my understanding of our value, I'm researching all the machine learning tools. I realized I would have to be a specialist in any of them, and my main skillset is in systems engineering and data engines. I look forward to being an analytics specialist. In real life, I would be better off hiring a professional because when I decide which tool I want to use for what job, I could hire that professional. They would be valuable to me across the whole of what we do. It's kinda of what I do when I build hardware and new products or do version upgrades. I hire a team just for production that are experts in their particular field, so I get production-quality pieces. At that point, my internal team can add the necessary analytics or automation. Hopefully, anyone getting the solution already knows what they will use it for. If they're starting from scratch, I strongly recommend hiring a consultant. I rate TensorFlow an eight out of ten because, for my intents and purposes, I don't know what else one can use to get into the machine learning game if you're going to export models.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"For me, the product's initial setup phase is easy...For beginners, it is fairly easy to learn."
"PyTorch is developer-friendly, allowing developers to continuously create new projects."
"yTorch is gaining credibility in the research space, it's becoming easier to find examples of papers that use PyTorch. This is an advantage for someone who uses PyTorch primarily."
"The tool is very user-friendly."
"It's been pretty scalable in terms of using multiple GPUs."
"We use PyTorch libraries, which are working well. It's very easy."
"PyTorch is developer-friendly, allowing developers to continuously create new projects."
"I like PyTorch's scalability."
"TensorFlow is an efficient product for building neural networks."
"Edge computing has some limited resources but TensorFlow has been improving in its features. It is a great tool for developers."
"The most valuable features are the frameworks and the functionality to work with different data, even when we have a certain quantity of data flowing."
"What made TensorFlow so appealing to us is that you could run it on a cluster computer and on a mobile device."
"Google is behind TensorFlow, and they provide excellent documentation. It's very thorough and very helpful."
"It's got quite a big community, which is useful."
"Optimization is very good in TensorFlow. There are many opportunities to do hyper-parameter training."
"It is easy to use and learn."
 

Cons

"I would like to see better learning documents."
"The product has certain shortcomings in the automation of machine learning."
"The product has breakdowns when we change the versions a lot."
"I would like a model to be available. I think Google recently released a new version of EfficientNet. It's a really good classifier, and a PyTorch implementation would be nice."
"I've had issues with stability when I use a lot of data and try out different combinations of modeling techniques."
"On the production side of things, having more frameworks would be helpful."
"PyTorch could make certain things more obvious. Even though it does make things like defining loss functions and calculating gradients in backward propagation clear, these concepts may confuse beginners. We find that it's kind of problematic. Despite having methods called on loss functions during backward passes, the oral documentation for beginners is quite complex."
"The analyzing and latency of compiling could be improved to provide enhanced results."
"However, if I want to change just one thing in the implementation of TensorFlow functions I have to copy everything that they wrote and I change it manually if indeed it can be amended. This is really hard as it's written in C++ and has a lot of complications."
"I would love to have a user interface like a programming interface. You need to have a set of menus where you can put things together in a graphical interface. The complete automation of the integration of the modules would also be interesting. It’s more like plumbing as opposed to a fully automated environment."
"It currently offers inbuilt functions, however, having the ability to implement custom libraries would enhance its usefulness for enterprise-level applications."
"JavaScript is a different thing and all the websites and web apps and all the mobile apps are built-in JavaScript. JavaScript is the core of that. However, TensorFlow is like a machine learning item. What can be improved with TensorFlow is how it can mix in how the JavaScript developers can use TensorFlow."
"Personally, I find it to be a bit too much AI-oriented."
"There are connection issues that interrupt the download needed for the data sets. We need to prepare them ourselves."
"The process of creating models could be more user-friendly."
"The solution is hard to integrate with the GPUs."
 

Pricing and Cost Advice

"It is free."
"PyTorch is open-sourced."
"It is free."
"The solution is affordable."
"PyTorch is open source."
"PyTorch is an open-source solution."
"The solution is free."
"We are using the free version."
"I think for learners to deploy a project, you can actually use TensorFlow for free. It's just amazing to have an open-source platform like TensorFlow to deploy your own project. Here in Russia no one really cares about licenses, as it is totally open source and free. My clients in the United States were also pleased to learn when they enquired, that licensing is free."
"TensorFlow is free."
"I rate TensorFlow's pricing a five out of ten."
"It is open-source software. You don't have to pay all the big bucks like Azure and Databricks."
"I am using the open-source version of TensorFlow and it is free."
"I did not require a license for this solution. It a free open-source solution."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
860,168 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Manufacturing Company
30%
Financial Services Firm
8%
University
8%
Comms Service Provider
7%
Manufacturing Company
15%
Computer Software Company
12%
Financial Services Firm
9%
University
9%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What is your experience regarding pricing and costs for PyTorch?
I haven't gone for a paid plan yet. I've just been using the free trial or open-source version.
What needs improvement with PyTorch?
PyTorch needs improvement in working on ARM-based chips. Although they have unified memory for GPU and RAM, they are unable to utilize these GPUs for processing efficiently. They take so much time....
What do you like most about TensorFlow?
It empowers us to seamlessly create and deploy machine learning models, offering a versatile solution for implementing sophisticated environments and various types of AI solutions.
What is your experience regarding pricing and costs for TensorFlow?
I am not familiar with the pricing setup cost and licensing.
What needs improvement with TensorFlow?
Providing more control by allowing users to build custom functions would make TensorFlow a better option. It currently offers inbuilt functions, however, having the ability to implement custom libr...
 

Comparisons

 

Overview

 

Sample Customers

Information Not Available
Airbnb, NVIDIA, Twitter, Google, Dropbox, Intel, SAP, eBay, Uber, Coca-Cola, Qualcomm
Find out what your peers are saying about PyTorch vs. TensorFlow and other solutions. Updated: June 2025.
860,168 professionals have used our research since 2012.