Try our new research platform with insights from 80,000+ expert users

Google Vertex AI vs Microsoft Azure Machine Learning Studio comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Jan 12, 2025

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Google Vertex AI
Ranking in AI Development Platforms
2nd
Average Rating
8.4
Reviews Sentiment
7.4
Number of Reviews
10
Ranking in other categories
AI Infrastructure (1st)
Microsoft Azure Machine Lea...
Ranking in AI Development Platforms
3rd
Average Rating
7.6
Reviews Sentiment
7.0
Number of Reviews
61
Ranking in other categories
Data Science Platforms (4th)
 

Mindshare comparison

As of April 2025, in the AI Development Platforms category, the mindshare of Google Vertex AI is 14.0%, down from 20.3% compared to the previous year. The mindshare of Microsoft Azure Machine Learning Studio is 7.3%, down from 13.7% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms
 

Featured Reviews

Serge Dahdouh - PeerSpot reviewer
A user-friendly platform that automatizes machine learning techniques with minimal effort
We work with clients who request the implementation of a certain document into a chatbot. Because of the limited knowledge of AI, our task is to link that file to the ML and provide a platform that can work as a customer service. We previously used LangChain Phython, but now it is done through Vertex AI.
Takayuki Umehara - PeerSpot reviewer
Streamlined workflows with drag and drop convenience but needs enhancements in AI
I use Machine Learning Studio for system reselling and integration Machine Learning Studio is easy to use, with a significant feature being the drag and drop interface that enhances workflow without any complaints. It provides a return on investment and cost savings, proving beneficial for…

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"We extensively utilize Google Cloud's Vertex AI platform for our machine learning workflows. Specifically, we leverage the IO branch for EDA data in Suresh Live Virtual, employing Forte IT for training machine learning models. The AI model registry in Vertex AI is crucial for cataloging and managing various versions of the models we develop. When it comes to deploying models, we rely on Google Cloud's AI Prediction service, seamlessly integrating it into our workflow for real-time predictions or streaming. For monitoring and tracking the outcomes of model development, we employ Vertex AI Monitoring, ensuring a comprehensive understanding of the model's performance and results. This integrated approach within Vertex AI provides a unified platform for managing, deploying, and monitoring machine learning models efficiently."
"The most valuable feature we've found is the model garden, which allows us to deploy and use various models through the provided endpoints easily."
"Vertex comes with inbuilt integration with GCP for data storage."
"The monitoring feature is a true life-saver for data scientists. I give it a ten out of ten."
"The most valuable features of the solution are that it is quite flexible, and some of the services are almost low-code, with no-code services, so it gives agents flexibility to build the use cases according to the operational needs."
"It provides the most valuable external analytics."
"The integration of AutoML features streamlines our machine-learning workflows."
"Vertex AI possesses multiple libraries, so it eliminates the need for extensive coding."
"The most valuable feature of Azure Machine Learning Studio for me is its convenience. I can quickly start using it without setting up the environment or buying a lot of devices."
"It helps in building customized models, which are easy for clients to use​.​​"
"Their support is helpful."
"The UI is very user-friendly and that AI is easy to use."
"​It has helped in reducing the time involved for coding using R and/or Python."
"What I like best about Microsoft Azure Machine Learning Studio is that it's a straightforward tool and it's easy to use. Another valuable feature of the tool is AutoML which lets you get better metrics to train the model right and with good accuracy. The AutoML feature allows you to simply put in your data, and it'll pre-process and create a more accurate model for you. You don't have to do anything because AutoML in Microsoft Azure Machine Learning Studio will take care of it."
"Visualisation, and the possibility of sharing functions are key features."
"ML Studio is very easy to maintain."
 

Cons

"The tool's documentation is not good. It is hard."
"Both major systems, Azure and Google, are not yet stabilized, especially their customer support."
"It would be beneficial to have certain features included in the future, such as image generators and text-to-speech solutions."
"I've noticed that using chat activity often presents a broader range of options and insights for a well-constructed question. Improving the knowledge base could be a key aspect for enhancement—expanding the information sources to enhance the generation process."
"The solution is stable, but it is quite slow. Maybe my data is too large, but I think that Google could improve Vertex AI's training time."
"I believe that Vertex AI is a robust platform, but its effectiveness depends significantly on the domain knowledge of the developer using it. While Vertex AI does offer support through the console UI in the Google Cloud environment, it is better suited for technical members who have a deeper understanding of machine learning concepts. The platform may be challenging for business process developers (BPDUs) who lack extensive technical knowledge, as it involves intricate customization and handling numerous parameters. Effectively utilizing Vertex AI requires not only familiarity with machine learning frameworks like TensorFlow or PyTorch but also a proficiency in Python programming. The complexity of these requirements might pose challenges for less technically oriented users, making it crucial to have a solid foundation in both machine learning principles and Python coding to extract the full value from Vertex AI. It would be beneficial to have a streamlined process where we can leverage the capabilities of Vertex AI directly through the BigQuery UI. This could involve functionalities such as creating machine learning models within the BigQuery UI, providing a more user-friendly and integrated experience. This would allow users to access and analyze data from BigQuery while simultaneously utilizing Vertex AI to build machine learning models, fostering a more cohesive and efficient workflow."
"I'm not sure if I have suggestions for improvement."
"I think the technical documentation is not readily available in the tool."
"I think they should improve two things. They should make their user interface more user-friendly. Integration could also be better. Because Microsoft Machine Learning is a Microsoft product, it's fully integrated with Microsoft Azure but not fully supported for other platforms like IBM or AWS or something else."
"We can create a label job, but we still have to use the Azure Machine Learning REST APIs, which are not yet supported in the Python SDK version 2."
"Integration with social media would be a valuable enhancement."
"There's room for improvement in terms of binding the integration with Azure DevOps."
"Performance is very poor."
"In terms of data capabilities, if we compare it to Google Cloud's BigQuery, we find a difference. When fetching data from web traffic, Google can do a lot of processing with small queries or functions."
"I have found Databricks is a better solution because it has a lot of different cluster choices and better integration with MLflow, which is much easier to handle in a machine learning system."
"The AutoML feature is very basic and they should improve it by using a more robust algorithm."
 

Pricing and Cost Advice

"I think almost every tool offers a decent discount. In terms of credits or other stuff, every cloud provider provides a good number of incentives to onboard new clients."
"The Versa AI offers attractive pricing. With this pricing structure, I can leverage various opportunities to bring value to my business. It's a positive aspect worth considering."
"The solution's pricing is moderate."
"The price structure is very clear"
"It is less expensive than one of its competitors."
"I rate the product price as a nine on a scale of one to ten, where ten means it is very expensive."
"When we got our first models and were ready for the user acceptance testing, our licensing fees were between €2,500 ($2,750 USD) and €3,000 ($3,300 USD) monthly."
"I am paying for it following a pay-as-you-go. So, the more I use it, the more it costs."
"I rate the solution's pricing a four on a scale of one to ten, where one is cheap, and ten is expensive."
"The solution cost is high."
"There isn’t any such expensive costs and only a standard license is required."
"I would rate the pricing an eight out of ten, with ten being very expensive. Not very expensive, not very cheap."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
845,040 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
13%
Financial Services Firm
13%
Manufacturing Company
9%
Retailer
7%
Financial Services Firm
13%
Computer Software Company
11%
Manufacturing Company
10%
Healthcare Company
7%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Google Vertex AI?
We extensively utilize Google Cloud's Vertex AI platform for our machine learning workflows. Specifically, we leverage the IO branch for EDA data in Suresh Live Virtual, employing Forte IT for trai...
What is your experience regarding pricing and costs for Google Vertex AI?
They have different pricing models like pay-as-you-go or subscription model, and total cost of ownership. It is comparatively cheaper than Azure.
What needs improvement with Google Vertex AI?
I'm not sure if I have suggestions for improvement. Based on my comparison between the two, Vertex has various additional functionalities that Azure doesn't provide.
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
What do you like most about Microsoft Azure Machine Learning Studio?
The learning curve is very low. Operationalizing the model is also very easy within the Azure ecosystem.
What is your experience regarding pricing and costs for Microsoft Azure Machine Learning Studio?
Pricing is considered to be top-segment and should be improved. I rate the pricing as three or four on a scale of one to ten in terms of affordability.
 

Also Known As

No data available
Azure Machine Learning, MS Azure Machine Learning Studio
 

Overview

 

Sample Customers

Information Not Available
Walgreens Boots Alliance, Schneider Electric, BP
Find out what your peers are saying about Google Vertex AI vs. Microsoft Azure Machine Learning Studio and other solutions. Updated: March 2025.
845,040 professionals have used our research since 2012.