Try our new research platform with insights from 80,000+ expert users

Google Vertex AI vs Hugging Face comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Jul 27, 2025

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Google Vertex AI
Ranking in AI Development Platforms
1st
Average Rating
8.4
Reviews Sentiment
6.7
Number of Reviews
12
Ranking in other categories
AI Infrastructure (1st)
Hugging Face
Ranking in AI Development Platforms
3rd
Average Rating
8.2
Reviews Sentiment
7.1
Number of Reviews
13
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of August 2025, in the AI Development Platforms category, the mindshare of Google Vertex AI is 11.1%, down from 20.9% compared to the previous year. The mindshare of Hugging Face is 12.6%, up from 9.7% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms Market Share Distribution
ProductMarket Share (%)
Google Vertex AI11.1%
Hugging Face12.6%
Other76.3%
AI Development Platforms
 

Featured Reviews

Hamada Farag - PeerSpot reviewer
Customization and integration empower diverse AI applications
We are familiar with most Google Cloud services, particularly infrastructure services, storage, compute, AI tools, containerization, GCP containerization, and cloud SQL. We are familiar with approximately eighty percent of Google's services, primarily related to infrastructure, AI, containers, backup, storage, and compute. We are familiar with Gemini AI and Google Vertex AI, and we have completed some exercises and cases with our customers for Google AI. We use automation in machine learning. I work with a team where everyone has specific responsibilities. We have design and development processes in place. Based on my experience, I would rate Google Vertex AI a 9 out of 10.
SwaminathanSubramanian - PeerSpot reviewer
Versatility empowers AI concept development despite the multi-GPU challenge
Regarding scalability, I'm finding the multi-GPU aspect of it challenging. Training the model is another hurdle, although I'm only getting into that aspect currently. Organizations are apprehensive about investing in multi-GPU setups. Additionally, data cleanup is a challenge that needs to be resolved, as data must be mature and pristine.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The integration of AutoML features streamlines our machine-learning workflows."
"We extensively utilize Google Cloud's Vertex AI platform for our machine learning workflows. Specifically, we leverage the IO branch for EDA data in Suresh Live Virtual, employing Forte IT for training machine learning models. The AI model registry in Vertex AI is crucial for cataloging and managing various versions of the models we develop. When it comes to deploying models, we rely on Google Cloud's AI Prediction service, seamlessly integrating it into our workflow for real-time predictions or streaming. For monitoring and tracking the outcomes of model development, we employ Vertex AI Monitoring, ensuring a comprehensive understanding of the model's performance and results. This integrated approach within Vertex AI provides a unified platform for managing, deploying, and monitoring machine learning models efficiently."
"Google Vertex AI is better for deployment, configuration, delivery, licensing, and integration compared to other AI platforms."
"It provides the most valuable external analytics."
"The monitoring feature is a true life-saver for data scientists. I give it a ten out of ten."
"Vertex AI possesses multiple libraries, so it eliminates the need for extensive coding."
"The most valuable features of the solution are that it is quite flexible, and some of the services are almost low-code, with no-code services, so it gives agents flexibility to build the use cases according to the operational needs."
"Vertex comes with inbuilt integration with GCP for data storage."
"Hugging Face provides open-source models, making it the best open-source and reliable solution."
"I appreciate the versatility and the fact that it has generalized many models."
"It is stable."
"The most valuable features are the inference APIs as it takes me a long time to run inferences on my local machine."
"My preferred aspects are natural language processing and question-answering."
"There are numerous libraries available, and the documentation is rich and step-by-step, helping us understand which model to use in particular conditions."
"What I find the most valuable about Hugging Face is that I can check all the models on it and see which ones have the best performance without using another platform."
"The tool's most valuable feature is that it's open-source and has hundreds of packages already available. This makes it quite helpful for creating our LLMs."
 

Cons

"Google Vertex AI is good in machine learning and AI, but it lacks optimization."
"I believe that Vertex AI is a robust platform, but its effectiveness depends significantly on the domain knowledge of the developer using it. While Vertex AI does offer support through the console UI in the Google Cloud environment, it is better suited for technical members who have a deeper understanding of machine learning concepts. The platform may be challenging for business process developers (BPDUs) who lack extensive technical knowledge, as it involves intricate customization and handling numerous parameters. Effectively utilizing Vertex AI requires not only familiarity with machine learning frameworks like TensorFlow or PyTorch but also a proficiency in Python programming. The complexity of these requirements might pose challenges for less technically oriented users, making it crucial to have a solid foundation in both machine learning principles and Python coding to extract the full value from Vertex AI. It would be beneficial to have a streamlined process where we can leverage the capabilities of Vertex AI directly through the BigQuery UI. This could involve functionalities such as creating machine learning models within the BigQuery UI, providing a more user-friendly and integrated experience. This would allow users to access and analyze data from BigQuery while simultaneously utilizing Vertex AI to build machine learning models, fostering a more cohesive and efficient workflow."
"I think the technical documentation is not readily available in the tool."
"I'm not sure if I have suggestions for improvement."
"The tool's documentation is not good. It is hard."
"It is not completely mature and needs some features and functions. The interface needs to be more user-friendly."
"It takes a considerable amount of time to process, and I understand the technology behind why it takes this long, but this is something that could be reduced."
"It is not completely mature and needs some features and functions. The interface needs to be more user-friendly."
"Hugging Face could improve by implementing a search engine or chat bot feature similar to ChatGPT."
"I've worked on three projects using Hugging Face, and only once did we encounter a problem with the code. We had to use another open-source embedding from OpenAI to resolve it. Our team has three members: me, my colleague, and a team leader. We looked at the problem and resolved it."
"It can incorporate AI into its services."
"The solution must provide an efficient LLM."
"The initial setup can be rated as a seven out of ten due to occasional issues during model deployment, which might require adjustments."
"The area that needs improvement would be the organization of the materials. It could be clearer and more systematic. It would be good if the layout was clear and we could search the models easily."
"I believe Hugging Face has some room for improvement. There are some security issues. They provide code, but API tokens aren't indicated. Also, the documentation for particular models could use more explanation. But I think these things are improving daily. The main change I'd like to see is making the deployment of inference endpoints more customizable for users."
"Regarding scalability, I'm finding the multi-GPU aspect of it challenging. Training the model is another hurdle, although I'm only getting into that aspect currently."
 

Pricing and Cost Advice

"The solution's pricing is moderate."
"The price structure is very clear"
"I think almost every tool offers a decent discount. In terms of credits or other stuff, every cloud provider provides a good number of incentives to onboard new clients."
"The Versa AI offers attractive pricing. With this pricing structure, I can leverage various opportunities to bring value to my business. It's a positive aspect worth considering."
"Hugging Face is an open-source solution."
"The tool is open-source. The cost depends on what task you're doing. If you're using a large language model with around 12 million parameters, it will cost more. On average, Hugging Face is open source so you can download models to your local machine for free. For deployment, you can use any cloud service."
"We do not have to pay for the product."
"I recall seeing a fee of nine dollars, and there's also an enterprise option priced at twenty dollars per month."
"The solution is open source."
"So, it's requires expensive machines to open services or open LLM models."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
866,218 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
14%
Financial Services Firm
11%
Manufacturing Company
9%
Educational Organization
7%
Computer Software Company
11%
University
10%
Financial Services Firm
9%
Comms Service Provider
9%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business4
Midsize Enterprise2
Large Enterprise7
By reviewers
Company SizeCount
Small Business8
Midsize Enterprise2
Large Enterprise3
 

Questions from the Community

What do you like most about Google Vertex AI?
We extensively utilize Google Cloud's Vertex AI platform for our machine learning workflows. Specifically, we leverage the IO branch for EDA data in Suresh Live Virtual, employing Forte IT for trai...
What is your experience regarding pricing and costs for Google Vertex AI?
They have different pricing models like pay-as-you-go or subscription model, and total cost of ownership. It is comparatively cheaper than Azure.
What needs improvement with Google Vertex AI?
Google Vertex AI is one of the best in the market, followed by Azure AI. It can be rated at eight or nine out of ten. It is not completely mature and needs some features and functions. The interfac...
What do you like most about Hugging Face?
My preferred aspects are natural language processing and question-answering.
What needs improvement with Hugging Face?
It is challenging to suggest specific improvements for Hugging Face, as their platform is already very well-organized and efficient. However, they could focus on cleaning up outdated models if they...
What is your primary use case for Hugging Face?
I am working on AI with various large language models for different purposes such as medicine and law, where they are fine-tuned with specific requirements. I download LLMs from Hugging Face for th...
 

Overview

Find out what your peers are saying about Google Vertex AI vs. Hugging Face and other solutions. Updated: July 2025.
866,218 professionals have used our research since 2012.