Try our new research platform with insights from 80,000+ expert users

Databricks vs H2O.ai comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Databricks
Ranking in Data Science Platforms
1st
Average Rating
8.2
Reviews Sentiment
7.0
Number of Reviews
92
Ranking in other categories
Cloud Data Warehouse (9th), Data Management Platforms (DMP) (5th), Streaming Analytics (1st)
H2O.ai
Ranking in Data Science Platforms
15th
Average Rating
7.6
Reviews Sentiment
6.8
Number of Reviews
10
Ranking in other categories
Model Monitoring (4th)
 

Mindshare comparison

As of January 2026, in the Data Science Platforms category, the mindshare of Databricks is 9.6%, down from 18.9% compared to the previous year. The mindshare of H2O.ai is 1.9%, up from 1.5% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms Market Share Distribution
ProductMarket Share (%)
Databricks9.6%
H2O.ai1.9%
Other88.5%
Data Science Platforms
 

Featured Reviews

SimonRobinson - PeerSpot reviewer
Governance And Engagement Lead
Improved data governance has enabled sensitive data tracking but cost management still needs work
I believe we could improve Databricks integration with cloud service providers. The impact of our current integration has not been particularly good, and it's becoming very expensive for us. The inefficiencies in our implementation, such as not shutting down warehouses when they're not in use or reserving the right number of credits, have led to increased costs. We made several beginner mistakes, such as not taking advantage of incremental loading and running overly complicated queries all the time. We should be using ETL tools to help us instead of doing it directly in Databricks. We need more experienced professionals to manage Databricks effectively, as it's not as forgiving as other platforms such as Snowflake. I think introducing customer repositories would facilitate easier implementation with Databricks.
MA
Senior Manager - AI at Shamal Holding
Have improved machine learning model automation and reduced decision-making time
One improvement I would like to see in H2O.ai is regarding the integration capabilities with different data sources, as I've seen platforms like DataIQ and DataBricks offer great integration with various data sources. H2O.ai could benefit from enhanced integration with real-time versus offline data sources, as well as improvements in productionalization solutions, including better deployment options on platforms like Azure and CI/CD integration. One of the features I'd like to see included in upcoming releases of H2O.ai pertains to the growing trend of Generative AI, with applications for LLM-based models and vector databases. I would like to see a solution similar to Azure AI Foundry, which provides the flexibility to integrate different LLMs into applications, including H2O-GPT and other models for varied applications.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"I think Databricks is very good at facilitating AI and machine learning projects; they implement AI and machine learning models very well, and clients can run their models on Databricks."
"Specifically for data science and data analytics purposes, it can handle large amounts of data in less time. I can compare it with Teradata. If a job takes five hours with Teradata databases, Databricks can complete it in around three to three and a half hours."
"I like the ability to use workspaces with other colleagues because you can work together even without seeing the other team's job."
"The processing capacity is tremendous in the database."
"Databricks serves as a single platform that can handle numerous end-to-end machine learning tasks."
"This solution offers a lake house data concept that we have found exciting. We are able to have a large amount of data in a data lake and can manage all relational activities."
"We can scale the product."
"The solution offers a free community version."
"The most valuable features are the machine learning tools, the support for Jupyter Notebooks, and the collaboration that allows you to share it across people."
"The most valuable feature of H2O.ai is that it is plug-and-play."
"The ease of use in connecting to our cluster machines."
"Fast training, memory-efficient DataFrame manipulation, well-documented, easy-to-use algorithms, ability to integrate with enterprise Java apps (through POJO/MOJO) are the main reasons why we switched from Spark to H2O."
"One of the most interesting features of the product is their driverless component. The driverless component allows you to test several different algorithms along with navigating you through choosing the best algorithm."
"AutoML helps in hands-free initial evaluations of efficiency/accuracy of ML algorithms."
"I have utilized the AutoML feature in H2O.ai, which is one of the very powerful features where you don't need to worry about which algorithm is best for your model."
"H2O.ai provides better flexibility where I could examine more models and obtain results, and based on these results, I could make the next set of decisions."
 

Cons

"Instead of relying on a massive instance, the solution should offer micro partition levels. They're working on it, however, they need to implement it to help the solution run more effectively."
"The product could be improved by offering an expansion of their visualization capabilities, which currently assists in development in their notebook environment."
"If I want to create a Databricks account, I need to have a prior cloud account such as an AWS account or an Azure account. Only then can I create a Databricks account on the cloud. However, if they can make it so that I can still try Databricks even if I don't have a cloud account on AWS and Azure, it would be great. That is, it would be nice if it were possible to create a pseudo account and be provided with a free trial. It is very essential to creating a workforce on Databricks. For example, students or corporate staff can then explore and learn Databricks."
"The ability to customize our own pipelines would enhance the product, similar to what's possible using ML files in Microsoft Azure DevOps."
"Implementation of Databricks is still very code heavy."
"The tool should improve its integration with other products."
"The biggest problem associated with the product is that it is quite pricey."
"I believe that this product could be improved by becoming more user-friendly."
"I would like to see more features related to deployment."
"H2O.ai can improve in areas like multimodal support and prompt engineering."
"The interpretability module has room for improvement. Also, it needs to improve its ability to integrate with other systems, like SageMaker, and the overall integration capability."
"It needs a drag and drop GUI like KNIME, for easy access to and visibility of workflows."
"It lacks the data manipulation capabilities of R and Pandas DataFrames. We would kill for dplyr offloading H2O."
"On the topic of model training and model governance, this solution cannot handle ten or twelve models running at the same time."
"Referring to bullet-3 as well, H2O DataFrame manipulation capabilities are too primitive."
"The model management features could be improved."
 

Pricing and Cost Advice

"The product pricing is moderate."
"Databricks' cost could be improved."
"The solution is a good value for batch processing and huge workloads."
"The price of Databricks is reasonable compared to other solutions."
"The licensing costs of Databricks depend on how many licenses we need, depending on which Databricks provides a lot of discounts."
"We only pay for the Azure compute behind the solution."
"The pricing depends on the usage itself."
"We have only incurred the cost of our AWS cloud services. This is because during this period, Databricks provided us with an extended evaluation period, and we have not spent much money yet. We are just starting to incur costs this month, I will know more later on the full cost perspective."
"We have seen significant ROI where we were able to use the product in certain key projects and could automate a lot of processes. We were even able to reduce staff."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
881,082 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
18%
Manufacturing Company
9%
Computer Software Company
9%
Healthcare Company
6%
Financial Services Firm
14%
Computer Software Company
11%
Educational Organization
7%
Manufacturing Company
7%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business25
Midsize Enterprise12
Large Enterprise56
By reviewers
Company SizeCount
Small Business2
Midsize Enterprise3
Large Enterprise7
 

Questions from the Community

Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
Which would you choose - Databricks or Azure Stream Analytics?
Databricks is an easy-to-set-up and versatile tool for data management, analysis, and business analytics. For analytics teams that have to interpret data to further the business goals of their orga...
What needs improvement with H2O.ai?
Even though H2O.ai provides the best model, there could be improvements in certain areas. For instance, when you want to work with fusion models, H2O.ai doesn't provide that kind of information. Cu...
What is your primary use case for H2O.ai?
I used H2O.ai on several POCs for my previous company, and it helped me find the best model. I needed to determine which model was performing better for job portal data. At that time, H2O.ai was ev...
What advice do you have for others considering H2O.ai?
For larger datasets, model computation or model training and testing typically takes considerable time because with individual models, you need to train and test each one. With H2O.ai, these concer...
 

Comparisons

 

Also Known As

Databricks Unified Analytics, Databricks Unified Analytics Platform, Redash
No data available
 

Overview

 

Sample Customers

Elsevier, MyFitnessPal, Sharethrough, Automatic Labs, Celtra, Radius Intelligence, Yesware
poder.io, Stanley Black & Decker, G5, PWC, Comcast, Cisco
Find out what your peers are saying about Databricks vs. H2O.ai and other solutions. Updated: December 2025.
881,082 professionals have used our research since 2012.