Try our new research platform with insights from 80,000+ expert users

Databricks vs H2O.ai comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Databricks
Ranking in Data Science Platforms
1st
Average Rating
8.2
Reviews Sentiment
7.0
Number of Reviews
91
Ranking in other categories
Cloud Data Warehouse (9th), Streaming Analytics (1st)
H2O.ai
Ranking in Data Science Platforms
18th
Average Rating
7.6
Reviews Sentiment
6.8
Number of Reviews
10
Ranking in other categories
Model Monitoring (4th)
 

Mindshare comparison

As of October 2025, in the Data Science Platforms category, the mindshare of Databricks is 13.9%, down from 19.2% compared to the previous year. The mindshare of H2O.ai is 1.7%, up from 1.5% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms Market Share Distribution
ProductMarket Share (%)
Databricks13.9%
H2O.ai1.7%
Other84.4%
Data Science Platforms
 

Featured Reviews

ShubhamSharma7 - PeerSpot reviewer
Capability to integrate diverse coding languages in a single notebook greatly enhances workflow
Databricks offers various courses that I can use, whether it's PySpark, Scala, or R. I can leverage all these courses in a single notebook, which is beneficial for clients as they can access various tools in one place whenever needed. This is quite significant. I usually work with PySpark based on client requirements. After coding, I feed the Databricks notebooks into the ADF pipeline for updates. Databricks' capability to process data in parallel enhances data processing speed. Furthermore, I can connect our Databricks notebook directly with Power BI and other visualization tools like Qlik. Once we develop code, it allows us to transform raw data into visualizations for clients using analysis diagrams, which is very helpful.
Abhay Vyas - PeerSpot reviewer
Advanced model selection and time efficiency meet needs but documentation and fusion model support are needed
Even though H2O.ai provides the best model, there could be improvements in certain areas. For instance, when you want to work with fusion models, H2O.ai doesn't provide that kind of information. Currently, it provides individual models as outcomes. If it could offer combinations of models, such as suggesting using XGBoost along with SVM for wonderful results, that fusion model concept would be a good option for developers. I hope the fusion model concept will be implemented soon in H2O.ai. Regarding documentation, I faced challenges as I didn't see much information from a documentation perspective. When I was trying to learn how to train and test H2O.ai, there was limited documentation available. If they could improve in that area, it would be really beneficial.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"In the manufacturing industry, Databricks can be beneficial to use because of machine learning. It is useful for tasks, such as product analysis or predictive maintenance."
"The Delta Lake data type has been the most useful part of this solution. Delta Lake is an opensource data type and it was implemented and invented by Databricks."
"The solution is easy to use and has a quick start-up time due to being on the cloud."
"Databricks is a robust solution for big data processing, offering flexibility and powerful features."
"Databricks gives us the ability to build a lakehouse framework and do everything implicit to this type of database structure. We also like the ability to stream events. Databricks covers a broad spectrum, from reporting and machine learning to streaming events. It's important for us to have all these features in one platform."
"Databricks helps crunch petabytes of data in a very short period of time."
"Imageflow is a visual tool that helps make it easier for business people to understand complex workflows."
"I like the ability to use workspaces with other colleagues because you can work together even without seeing the other team's job."
"I have utilized the AutoML feature in H2O.ai, which is one of the very powerful features where you don't need to worry about which algorithm is best for your model."
"It is helpful, intuitive, and easy to use. The learning curve is not too steep."
"Fast training, memory-efficient DataFrame manipulation, well-documented, easy-to-use algorithms, ability to integrate with enterprise Java apps (through POJO/MOJO) are the main reasons why we switched from Spark to H2O."
"The most valuable features are the machine learning tools, the support for Jupyter Notebooks, and the collaboration that allows you to share it across people."
"The most valuable feature of H2O.ai is that it is plug-and-play."
"One of the most interesting features of the product is their driverless component. The driverless component allows you to test several different algorithms along with navigating you through choosing the best algorithm."
"AutoML helps in hands-free initial evaluations of efficiency/accuracy of ML algorithms."
"H2O.ai provides better flexibility where I could examine more models and obtain results, and based on these results, I could make the next set of decisions."
 

Cons

"Pricing is one of the things that could be improved."
"Scalability is an area with certain shortcomings. The solution's scalability needs improvement."
"I'm not the guy that I'm working with Databricks on a daily basis. I'm on the management team. However, my team tells me there are limitations with streaming events. The connectors work with a small set of platforms. For example, we can work with Kafka, but if we want to move to an event-driven solution from AWS, we cannot do it. We cannot connect to all the streaming analytics platforms, so we are limited in choosing the best one."
"Doesn't provide a lot of credits or trial options."
"I would like it if Databricks adopted an interface more like R Studio. When I create a data frame or a table, R Studio provides a preview of the data. In R Studio, I can see that it created a table with so many columns or rows. Then I can click on it and open a preview of that data."
"I would like it if Databricks made it easier to set up a project."
"The query plan is not easy with Databrick's job level. If I want to tune any of the code, it is not easily available in the blogs as well."
"Overall it's a good product, however, it doesn't do well against any individual best-of-breed products."
"The model management features could be improved."
"It lacks the data manipulation capabilities of R and Pandas DataFrames. We would kill for dplyr offloading H2O."
"I would like to see more features related to deployment."
"One improvement I would like to see in H2O.ai is regarding the integration capabilities with different data sources, as I've seen platforms like DataIQ and DataBricks offer great integration with various data sources."
"It needs a drag and drop GUI like KNIME, for easy access to and visibility of workflows."
"Referring to bullet-3 as well, H2O DataFrame manipulation capabilities are too primitive."
"The interpretability module has room for improvement. Also, it needs to improve its ability to integrate with other systems, like SageMaker, and the overall integration capability."
"H2O.ai can improve in areas like multimodal support and prompt engineering."
 

Pricing and Cost Advice

"I would rate Databricks' pricing seven out of ten."
"I would rate the tool’s pricing an eight out of ten."
"We have only incurred the cost of our AWS cloud services. This is because during this period, Databricks provided us with an extended evaluation period, and we have not spent much money yet. We are just starting to incur costs this month, I will know more later on the full cost perspective."
"The licensing costs of Databricks depend on how many licenses we need, depending on which Databricks provides a lot of discounts."
"The cost for Databricks depends on the use case. I work on it as a consultant, so I'm using the client's Databricks, so it depends on how big the client is."
"I do not exactly know the costs, but one of our clients pays between $100 USD and $200 USD monthly."
"Databricks' cost could be improved."
"The price is okay. It's competitive."
"We have seen significant ROI where we were able to use the product in certain key projects and could automate a lot of processes. We were even able to reduce staff."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
868,787 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
18%
Computer Software Company
9%
Manufacturing Company
9%
Healthcare Company
6%
Financial Services Firm
16%
Computer Software Company
14%
Manufacturing Company
9%
Educational Organization
7%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business25
Midsize Enterprise12
Large Enterprise56
By reviewers
Company SizeCount
Small Business2
Midsize Enterprise3
Large Enterprise7
 

Questions from the Community

Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
Which would you choose - Databricks or Azure Stream Analytics?
Databricks is an easy-to-set-up and versatile tool for data management, analysis, and business analytics. For analytics teams that have to interpret data to further the business goals of their orga...
What needs improvement with H2O.ai?
Even though H2O.ai provides the best model, there could be improvements in certain areas. For instance, when you want to work with fusion models, H2O.ai doesn't provide that kind of information. Cu...
What is your primary use case for H2O.ai?
I used H2O.ai on several POCs for my previous company, and it helped me find the best model. I needed to determine which model was performing better for job portal data. At that time, H2O.ai was ev...
What advice do you have for others considering H2O.ai?
For larger datasets, model computation or model training and testing typically takes considerable time because with individual models, you need to train and test each one. With H2O.ai, these concer...
 

Comparisons

 

Also Known As

Databricks Unified Analytics, Databricks Unified Analytics Platform, Redash
No data available
 

Overview

 

Sample Customers

Elsevier, MyFitnessPal, Sharethrough, Automatic Labs, Celtra, Radius Intelligence, Yesware
poder.io, Stanley Black & Decker, G5, PWC, Comcast, Cisco
Find out what your peers are saying about Databricks vs. H2O.ai and other solutions. Updated: September 2025.
868,787 professionals have used our research since 2012.