Try our new research platform with insights from 80,000+ expert users

Apache Flink vs Databricks comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 17, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Flink
Ranking in Streaming Analytics
6th
Average Rating
7.6
Reviews Sentiment
6.9
Number of Reviews
16
Ranking in other categories
No ranking in other categories
Databricks
Ranking in Streaming Analytics
1st
Average Rating
8.2
Reviews Sentiment
7.0
Number of Reviews
88
Ranking in other categories
Cloud Data Warehouse (7th), Data Science Platforms (1st)
 

Mindshare comparison

As of April 2025, in the Streaming Analytics category, the mindshare of Apache Flink is 13.2%, up from 9.5% compared to the previous year. The mindshare of Databricks is 14.6%, up from 10.1% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics
 

Featured Reviews

Ilya Afanasyev - PeerSpot reviewer
A great solution with an intricate system and allows for batch data processing
We value this solution's intricate system because it comes with a state inside the mechanism and product. The system allows us to process batch data, stream to real-time and build pipelines. Additionally, we do not need to process data from the beginning when we pause, and we can continue from the same point where we stopped. It helps us save time as 95% of our pipelines will now be on Amazon, and we'll save money by saving time.
ShubhamSharma7 - PeerSpot reviewer
Capability to integrate diverse coding languages in a single notebook greatly enhances workflow
Databricks offers various courses that I can use, whether it's PySpark, Scala, or R. I can leverage all these courses in a single notebook, which is beneficial for clients as they can access various tools in one place whenever needed. This is quite significant. I usually work with PySpark based on client requirements. After coding, I feed the Databricks notebooks into the ADF pipeline for updates. Databricks' capability to process data in parallel enhances data processing speed. Furthermore, I can connect our Databricks notebook directly with Power BI and other visualization tools like Qlik. Once we develop code, it allows us to transform raw data into visualizations for clients using analysis diagrams, which is very helpful.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The top feature of Apache Flink is its low latency for fast, real-time data. Another great feature is the real-time indicators and alerts which make a big difference when it comes to data processing and analysis."
"Apache Flink allows you to reduce latency and process data in real-time, making it ideal for such scenarios."
"The product helps us to create both simple and complex data processing tasks. Over time, it has facilitated integration and navigation across multiple data sources tailored to each client's needs. We use Apache Flink to control our clients' installations."
"Apache Flink offers a range of powerful configurations and experiences for development teams. Its strength lies in its development experience and capabilities."
"It provides us the flexibility to deploy it on any cluster without being constrained by cloud-based limitations."
"Another feature is how Flink handles its radiuses. It has something called the checkpointing concept. You're dealing with billions and billions of requests, so your system is going to fail in large storage systems. Flink handles this by using the concept of checkpointing and savepointing, where they write the aggregated state into some separate storage. So in case of failure, you can basically recall from that state and come back."
"This is truly a real-time solution."
"The setup was not too difficult."
"Databricks covers end-to-end data analytics workflow in one platform, this is the best feature of the solution."
"Databricks serves as a single platform for conducting the entire end-to-end lifecycle of machine learning models or AI ops."
"Databricks helps crunch petabytes of data in a very short period of time."
"I like how easy it is to share your notebook with others. You can give people permission to read or edit. I think that's a great feature. You can also pull in code from GitHub pretty easily. I didn't use it that often, but I think that's a cool feature."
"I like that Databricks is a unified platform that lets you do streaming and batch processing in the same place. You can do analytics, too. They have added something called Databricks SQL Analytics, allowing users to connect to the data lake to perform analytics. Databricks also will enable you to share your data securely. It integrates with your reporting system as well."
"We like that this solution can handle a wide variety and velocity of data engineering, either in batch mode or real-time."
"Databricks serves as a single platform that can handle numerous end-to-end machine learning tasks."
"The technical support is good."
 

Cons

"In a future release, they could improve on making the error descriptions more clear."
"Apache Flink's documentation should be available in more languages."
"PyFlink is not as fully featured as Python itself, so there are some limitations to what you can do with it."
"Amazon's CloudFormation templates don't allow for direct deployment in the private subnet."
"The solution could be more user-friendly."
"Apache Flink should improve its data capability and data migration."
"In terms of stability with Flink, it is something that you have to deal with every time. Stability is the number one problem that we have seen with Flink, and it really depends on the kind of problem that you're trying to solve."
"There is room for improvement in the initial setup process."
"It would be nice to have more guidance on integrations with ETLs and other data quality tools."
"The tool should improve its integration with other products."
"The query plan is not easy with Databrick's job level. If I want to tune any of the code, it is not easily available in the blogs as well."
"We often use a single cluster to ingest Databricks, which Databricks doesn't recommend. They suggest using a no-cluster solution like job clusters. This can be overwhelming for us because we started smaller."
"It would be better if it were faster. It can be slow, and it can be super fast for big data. But for small data, sometimes there is a sub-second response, which can be considered slow. In the next release, I would like to have automatic creation of APIs because they don't have it at the moment, and I spend a lot of time building them."
"Databricks' technical support takes a while to respond and could be improved."
"Anyone who doesn't know SQL may find the product difficult to work with."
"Databricks has added some alerts and query functionality into their SQL persona, but the whole SQL persona, which is like a role, needs a lot of development. The alerts are not very flexible, and the query interface itself is not as polished as the notebook interface that is used through the data science and machine learning persona. It is clunky at present."
 

Pricing and Cost Advice

"The solution is open-source, which is free."
"Apache Flink is open source so we pay no licensing for the use of the software."
"It's an open source."
"This is an open-source platform that can be used free of charge."
"It's an open-source solution."
"We find Databricks to be very expensive, although this improved when we found out how to shut it down at night."
"Licensing on site I would counsel against, as on-site hardware issues tend to really delay and slow down delivery."
"My smallest project is around a hundred euros, and my most expensive is just under a thousand euros a week. That is based on terabytes of data processed each month."
"I would rate Databricks' pricing seven out of ten."
"I am based in South Africa, where it is expensive adapting to the cloud, and then there is the price for the tool itself."
"We have only incurred the cost of our AWS cloud services. This is because during this period, Databricks provided us with an extended evaluation period, and we have not spent much money yet. We are just starting to incur costs this month, I will know more later on the full cost perspective."
"I rate the price of Databricks as eight out of ten."
"The pricing depends on the usage itself."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
845,406 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
23%
Computer Software Company
16%
Manufacturing Company
7%
Retailer
4%
Financial Services Firm
17%
Computer Software Company
11%
Manufacturing Company
9%
Healthcare Company
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Apache Flink?
The product helps us to create both simple and complex data processing tasks. Over time, it has facilitated integration and navigation across multiple data sources tailored to each client's needs. ...
What is your experience regarding pricing and costs for Apache Flink?
The solution is expensive. I rate the product’s pricing a nine out of ten, where one is cheap and ten is expensive.
What needs improvement with Apache Flink?
There are more libraries that are missing and also maybe more capabilities for machine learning. It could have a friendly user interface for pipeline configuration, deployment, and monitoring.
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
Which would you choose - Databricks or Azure Stream Analytics?
Databricks is an easy-to-set-up and versatile tool for data management, analysis, and business analytics. For analytics teams that have to interpret data to further the business goals of their orga...
 

Also Known As

Flink
Databricks Unified Analytics, Databricks Unified Analytics Platform, Redash
 

Overview

 

Sample Customers

LogRhythm, Inc., Inter-American Development Bank, Scientific Technologies Corporation, LotLinx, Inc., Benevity, Inc.
Elsevier, MyFitnessPal, Sharethrough, Automatic Labs, Celtra, Radius Intelligence, Yesware
Find out what your peers are saying about Apache Flink vs. Databricks and other solutions. Updated: March 2025.
845,406 professionals have used our research since 2012.