Try our new research platform with insights from 80,000+ expert users

Apache Flink vs Databricks comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 17, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Flink
Ranking in Streaming Analytics
3rd
Average Rating
7.8
Reviews Sentiment
6.7
Number of Reviews
19
Ranking in other categories
No ranking in other categories
Databricks
Ranking in Streaming Analytics
1st
Average Rating
8.2
Reviews Sentiment
7.0
Number of Reviews
93
Ranking in other categories
Cloud Data Warehouse (9th), Data Science Platforms (1st), Data Management Platforms (DMP) (5th)
 

Mindshare comparison

As of February 2026, in the Streaming Analytics category, the mindshare of Apache Flink is 11.3%, down from 12.1% compared to the previous year. The mindshare of Databricks is 9.5%, down from 14.1% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics Market Share Distribution
ProductMarket Share (%)
Databricks9.5%
Apache Flink11.3%
Other79.2%
Streaming Analytics
 

Featured Reviews

Aswini Atibudhi - PeerSpot reviewer
Distinguished AI Leader at Walmart Global Tech at Walmart
Enables robust real-time data processing but documentation needs refinement
Apache Flink is very powerful, but it can be challenging for beginners because it requires prior experience with similar tools and technologies, such as Kafka and batch processing. It's essential to have a clear foundation; hence, it can be tough for beginners. However, once they grasp the concepts and have examples or references, it becomes easier. Intermediate users who are integrating with Kafka or other sources may find it smoother. After setting up and understanding the concepts, it becomes quite stable and scalable, allowing for customization of jobs. Every software, including Apache Flink, has room for improvement as it evolves. One key area for enhancement is user-friendliness and the developer experience; improving documentation and API specifications is essential, as they can currently be verbose and complex. Debugging and local testing pose challenges for newcomers, particularly when learning about concepts such as time semantics and state handling. Although the APIs exist, they aren't intuitive enough. We also need to simplify operational procedures, such as developing tools and tuning Flink clusters, as these processes can be quite complex. Additionally, implementing one-click rollback for failures and improving state management during dynamic scaling while retaining the last states is vital, as the current large states pose scaling challenges.
Satyam Wagh - PeerSpot reviewer
Consultant at Nice Software Solutions
Unified data workflows have cut ticket processing times and are driving faster business insights
Databricks already provides monthly updates and continuously works on delivering new features while enhancing existing ones. However, the platform could become easier to use. While instruction-led workshops are available, offering more free instructional workshops would allow a wider audience to access and learn about Databricks. Additionally, providing use cases would help beginners gain more knowledge and hands-on experience. Regarding my experience, I was initially unfamiliar with the platform and had to conduct research and learn through various videos. I did find some instruction-led classes, but several of those required payment. The platform should provide more free resources to enable a broader audience to access and learn about Databricks. The platform itself is user-friendly and easy to use without complex issues, so I believe it does not need improvement in its core functionality. Rather, supporting aspects can be enhanced.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"What I appreciate best about Apache Flink is that it's open source and geared towards a distributed stream processing framework."
"Another feature is how Flink handles its radiuses. It has something called the checkpointing concept. You're dealing with billions and billions of requests, so your system is going to fail in large storage systems. Flink handles this by using the concept of checkpointing and savepointing, where they write the aggregated state into some separate storage. So in case of failure, you can basically recall from that state and come back."
"The top feature of Apache Flink is its low latency for fast, real-time data. Another great feature is the real-time indicators and alerts which make a big difference when it comes to data processing and analysis."
"The product helps us to create both simple and complex data processing tasks. Over time, it has facilitated integration and navigation across multiple data sources tailored to each client's needs. We use Apache Flink to control our clients' installations."
"Apache Flink provides faster and low-cost investment for me; I find it to have low hardware requirements, and it's faster with low code, meaning it's easy to understand for moving the streaming data."
"Apache Flink offers a range of powerful configurations and experiences for development teams. Its strength lies in its development experience and capabilities."
"Easy to deploy and manage."
"Apache Flink's best feature is its data streaming tool."
"The initial setup is pretty easy."
"The most valuable feature is the Spark cluster which is very fast for heavy loads, big data processing and Pi Spark."
"I would rate them ten out of ten."
"It can send out large data amounts."
"Imageflow is a visual tool that helps make it easier for business people to understand complex workflows."
"Databricks has helped us have a good presence in data."
"The solution is easy to use and has a quick start-up time due to being on the cloud."
"Databricks is a scalable solution. It is the largest advantage of the solution."
 

Cons

"The machine learning library is not very flexible."
"Apache Flink's documentation should be available in more languages."
"In terms of stability with Flink, it is something that you have to deal with every time. Stability is the number one problem that we have seen with Flink, and it really depends on the kind of problem that you're trying to solve."
"PyFlink is not as fully featured as Python itself, so there are some limitations to what you can do with it."
"The solution could be more user-friendly."
"The state maintains checkpoints and they use RocksDB or S3. They are good but sometimes the performance is affected when you use RocksDB for checkpointing."
"The technical support from Apache is not good; support needs to be improved. I would rate them from one to ten as not good."
"There is room for improvement in the initial setup process."
"In the next release, I would like to see more optimization features."
"The interface of Databricks could be easier to use when compared to other solutions. It is not easy for non-data scientists. The user interface is important before we had to write code manually and as solutions move to "No code AI" it is critical that the interface is very good."
"While Databricks is generally a robust solution, I have noticed a limitation with debugging in the Delta Live Table, which could be improved."
"The ability to customize our own pipelines would enhance the product, similar to what's possible using ML files in Microsoft Azure DevOps."
"The initial setup of Databricks could be complex."
"I would like more integration with SQL for using data in different workspaces."
"The product could be improved by offering an expansion of their visualization capabilities, which currently assists in development in their notebook environment."
"The API deployment and model deployment are not easy on the Databricks side."
 

Pricing and Cost Advice

"The solution is open-source, which is free."
"This is an open-source platform that can be used free of charge."
"Apache Flink is open source so we pay no licensing for the use of the software."
"It's an open source."
"It's an open-source solution."
"We find Databricks to be very expensive, although this improved when we found out how to shut it down at night."
"There are different versions."
"I would rate Databricks' pricing seven out of ten."
"The cost for Databricks depends on the use case. I work on it as a consultant, so I'm using the client's Databricks, so it depends on how big the client is."
"We pay as we go, so there isn't a fixed price. It's charged by the unit. I don't have any details detail about how they measure this, but it should be a mix between processing and quantity of data handled. We run a simulation based on our use cases, which gives us an estimate. We've been monitoring this, and the costs have met our expectations."
"We have only incurred the cost of our AWS cloud services. This is because during this period, Databricks provided us with an extended evaluation period, and we have not spent much money yet. We are just starting to incur costs this month, I will know more later on the full cost perspective."
"The solution uses a pay-per-use model with an annual subscription fee or package. Typically this solution is used on a cloud platform, such as Azure or AWS, but more people are choosing Azure because the price is more reasonable."
"We're charged on what the data throughput is and also what the compute time is."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
881,707 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
20%
Retailer
12%
Computer Software Company
10%
Manufacturing Company
6%
Financial Services Firm
18%
Manufacturing Company
9%
Computer Software Company
8%
Healthcare Company
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business5
Midsize Enterprise3
Large Enterprise12
By reviewers
Company SizeCount
Small Business26
Midsize Enterprise12
Large Enterprise56
 

Questions from the Community

What do you like most about Apache Flink?
The product helps us to create both simple and complex data processing tasks. Over time, it has facilitated integration and navigation across multiple data sources tailored to each client's needs. ...
What is your experience regarding pricing and costs for Apache Flink?
The solution is expensive. I rate the product’s pricing a nine out of ten, where one is cheap and ten is expensive.
What needs improvement with Apache Flink?
Apache could improve Apache Flink by providing more functionality, as they need to fully support data integration. The connectors are still very few for Apache Flink. There is a lack of functionali...
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
Which would you choose - Databricks or Azure Stream Analytics?
Databricks is an easy-to-set-up and versatile tool for data management, analysis, and business analytics. For analytics teams that have to interpret data to further the business goals of their orga...
 

Comparisons

 

Also Known As

Flink
Databricks Unified Analytics, Databricks Unified Analytics Platform, Redash
 

Overview

 

Sample Customers

LogRhythm, Inc., Inter-American Development Bank, Scientific Technologies Corporation, LotLinx, Inc., Benevity, Inc.
Elsevier, MyFitnessPal, Sharethrough, Automatic Labs, Celtra, Radius Intelligence, Yesware
Find out what your peers are saying about Apache Flink vs. Databricks and other solutions. Updated: December 2025.
881,707 professionals have used our research since 2012.