Try our new research platform with insights from 80,000+ expert users

Apache Flink vs Databricks comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 17, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Flink
Ranking in Streaming Analytics
4th
Average Rating
7.8
Reviews Sentiment
6.7
Number of Reviews
19
Ranking in other categories
No ranking in other categories
Databricks
Ranking in Streaming Analytics
1st
Average Rating
8.2
Reviews Sentiment
7.0
Number of Reviews
92
Ranking in other categories
Cloud Data Warehouse (9th), Data Science Platforms (1st), Data Management Platforms (DMP) (5th)
 

Mindshare comparison

As of January 2026, in the Streaming Analytics category, the mindshare of Apache Flink is 12.3%, up from 11.6% compared to the previous year. The mindshare of Databricks is 10.0%, down from 13.8% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics Market Share Distribution
ProductMarket Share (%)
Databricks10.0%
Apache Flink12.3%
Other77.7%
Streaming Analytics
 

Featured Reviews

Aswini Atibudhi - PeerSpot reviewer
Distinguished AI Leader at Walmart Global Tech at Walmart
Enables robust real-time data processing but documentation needs refinement
Apache Flink is very powerful, but it can be challenging for beginners because it requires prior experience with similar tools and technologies, such as Kafka and batch processing. It's essential to have a clear foundation; hence, it can be tough for beginners. However, once they grasp the concepts and have examples or references, it becomes easier. Intermediate users who are integrating with Kafka or other sources may find it smoother. After setting up and understanding the concepts, it becomes quite stable and scalable, allowing for customization of jobs. Every software, including Apache Flink, has room for improvement as it evolves. One key area for enhancement is user-friendliness and the developer experience; improving documentation and API specifications is essential, as they can currently be verbose and complex. Debugging and local testing pose challenges for newcomers, particularly when learning about concepts such as time semantics and state handling. Although the APIs exist, they aren't intuitive enough. We also need to simplify operational procedures, such as developing tools and tuning Flink clusters, as these processes can be quite complex. Additionally, implementing one-click rollback for failures and improving state management during dynamic scaling while retaining the last states is vital, as the current large states pose scaling challenges.
SimonRobinson - PeerSpot reviewer
Governance And Engagement Lead
Improved data governance has enabled sensitive data tracking but cost management still needs work
I believe we could improve Databricks integration with cloud service providers. The impact of our current integration has not been particularly good, and it's becoming very expensive for us. The inefficiencies in our implementation, such as not shutting down warehouses when they're not in use or reserving the right number of credits, have led to increased costs. We made several beginner mistakes, such as not taking advantage of incremental loading and running overly complicated queries all the time. We should be using ETL tools to help us instead of doing it directly in Databricks. We need more experienced professionals to manage Databricks effectively, as it's not as forgiving as other platforms such as Snowflake. I think introducing customer repositories would facilitate easier implementation with Databricks.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"With Flink, it provides out-of-the-box checkpointing and state management. It helps us in that way. When Storm used to restart, sometimes we would lose messages. With Flink, it provides guaranteed message processing, which helped us. It also helped us with maintenance or restarts."
"The ease of usage, even for complex tasks, stands out."
"The setup was not too difficult."
"This is truly a real-time solution."
"The event processing function is the most useful or the most used function. The filter function and the mapping function are also very useful because we have a lot of data to transform. For example, we store a lot of information about a person, and when we want to retrieve this person's details, we need all the details. In the map function, we can actually map all persons based on their age group. That's why the mapping function is very useful. We can really get a lot of events, and then we keep on doing what we need to do."
"Apache Flink is meant for low latency applications. You take one event opposite if you want to maintain a certain state. When another event comes and you want to associate those events together, in-memory state management was a key feature for us."
"Apache Flink offers a range of powerful configurations and experiences for development teams. Its strength lies in its development experience and capabilities."
"Apache Flink provides faster and low-cost investment for me; I find it to have low hardware requirements, and it's faster with low code, meaning it's easy to understand for moving the streaming data."
"We can scale the product."
"There are good features for turning off clusters."
"The built-in optimization recommendations halved the speed of queries and allowed us to reach decision points and deliver insights very quickly."
"The initial setup is pretty easy."
"Databricks provides a consistent interface for data engineers to work with data in a consistent language on a single integrated platform for ingesting, processing, and serving data to the end user."
"What I like about Databricks is that it's one of the most popular platforms that give access to folks who are trying not just to do exploratory work on the data but also go ahead and build advanced modeling and machine learning on top of that."
"Databricks covers end-to-end data analytics workflow in one platform, this is the best feature of the solution."
"I think Databricks is very good at facilitating AI and machine learning projects; they implement AI and machine learning models very well, and clients can run their models on Databricks."
 

Cons

"There is room for improvement in the initial setup process."
"The state maintains checkpoints and they use RocksDB or S3. They are good but sometimes the performance is affected when you use RocksDB for checkpointing."
"We have a machine learning team that works with Python, but Apache Flink does not have full support for the language."
"In a future release, they could improve on making the error descriptions more clear."
"Apache Flink is very powerful, but it can be challenging for beginners because it requires prior experience with similar tools and technologies, such as Kafka and batch processing."
"There is a learning curve. It takes time to learn."
"There are more libraries that are missing and also maybe more capabilities for machine learning."
"Apache should provide more examples and sample code related to streaming to help me better adapt and utilize the tool."
"We often use a single cluster to ingest Databricks, which Databricks doesn't recommend. They suggest using a no-cluster solution like job clusters. This can be overwhelming for us because we started smaller."
"The integration of data could be a bit better."
"I would love an integration in my desktop IDE. For now, I have to code on their webpage."
"It would be better if it were faster. It can be slow, and it can be super fast for big data. But for small data, sometimes there is a sub-second response, which can be considered slow. In the next release, I would like to have automatic creation of APIs because they don't have it at the moment, and I spend a lot of time building them."
"It would be great if Databricks could integrate all the cloud platforms."
"The product could be improved regarding the delay when switching to higher-performing virtual machines compared to other platforms."
"It's not easy to use, and they need a better UI."
"Pricing is one of the things that could be improved."
 

Pricing and Cost Advice

"This is an open-source platform that can be used free of charge."
"The solution is open-source, which is free."
"Apache Flink is open source so we pay no licensing for the use of the software."
"It's an open source."
"It's an open-source solution."
"The solution uses a pay-per-use model with an annual subscription fee or package. Typically this solution is used on a cloud platform, such as Azure or AWS, but more people are choosing Azure because the price is more reasonable."
"Whenever we want to find the actual costing, we have to send an email to Databricks, so having the information available on the internet would be helpful."
"I'm not involved in the financing, but I can say that the solution seemed reasonably priced compared to the competitors. Similar products are usually in the same price range. With five being affordable and one being expensive, I would rate Databricks a four out of five."
"I do not exactly know the costs, but one of our clients pays between $100 USD and $200 USD monthly."
"My smallest project is around a hundred euros, and my most expensive is just under a thousand euros a week. That is based on terabytes of data processed each month."
"It is an expensive tool. The licensing model is a pay-as-you-go one."
"I would rate Databricks' pricing seven out of ten."
"The product pricing is moderate."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
881,082 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
20%
Retailer
12%
Computer Software Company
10%
Manufacturing Company
6%
Financial Services Firm
18%
Manufacturing Company
9%
Computer Software Company
9%
Healthcare Company
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business5
Midsize Enterprise3
Large Enterprise12
By reviewers
Company SizeCount
Small Business25
Midsize Enterprise12
Large Enterprise56
 

Questions from the Community

What do you like most about Apache Flink?
The product helps us to create both simple and complex data processing tasks. Over time, it has facilitated integration and navigation across multiple data sources tailored to each client's needs. ...
What is your experience regarding pricing and costs for Apache Flink?
The solution is expensive. I rate the product’s pricing a nine out of ten, where one is cheap and ten is expensive.
What needs improvement with Apache Flink?
Apache could improve Apache Flink by providing more functionality, as they need to fully support data integration. The connectors are still very few for Apache Flink. There is a lack of functionali...
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
Which would you choose - Databricks or Azure Stream Analytics?
Databricks is an easy-to-set-up and versatile tool for data management, analysis, and business analytics. For analytics teams that have to interpret data to further the business goals of their orga...
 

Comparisons

 

Also Known As

Flink
Databricks Unified Analytics, Databricks Unified Analytics Platform, Redash
 

Overview

 

Sample Customers

LogRhythm, Inc., Inter-American Development Bank, Scientific Technologies Corporation, LotLinx, Inc., Benevity, Inc.
Elsevier, MyFitnessPal, Sharethrough, Automatic Labs, Celtra, Radius Intelligence, Yesware
Find out what your peers are saying about Apache Flink vs. Databricks and other solutions. Updated: December 2025.
881,082 professionals have used our research since 2012.