Try our new research platform with insights from 80,000+ expert users

Apache Flink vs Databricks comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 17, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Flink
Ranking in Streaming Analytics
5th
Average Rating
7.8
Reviews Sentiment
6.9
Number of Reviews
18
Ranking in other categories
No ranking in other categories
Databricks
Ranking in Streaming Analytics
1st
Average Rating
8.2
Reviews Sentiment
7.0
Number of Reviews
91
Ranking in other categories
Cloud Data Warehouse (9th), Data Science Platforms (1st)
 

Mindshare comparison

As of October 2025, in the Streaming Analytics category, the mindshare of Apache Flink is 14.8%, up from 10.6% compared to the previous year. The mindshare of Databricks is 12.5%, down from 12.8% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics Market Share Distribution
ProductMarket Share (%)
Databricks12.5%
Apache Flink14.8%
Other72.7%
Streaming Analytics
 

Featured Reviews

Aswini Atibudhi - PeerSpot reviewer
Enables robust real-time data processing but documentation needs refinement
Apache Flink is very powerful, but it can be challenging for beginners because it requires prior experience with similar tools and technologies, such as Kafka and batch processing. It's essential to have a clear foundation; hence, it can be tough for beginners. However, once they grasp the concepts and have examples or references, it becomes easier. Intermediate users who are integrating with Kafka or other sources may find it smoother. After setting up and understanding the concepts, it becomes quite stable and scalable, allowing for customization of jobs. Every software, including Apache Flink, has room for improvement as it evolves. One key area for enhancement is user-friendliness and the developer experience; improving documentation and API specifications is essential, as they can currently be verbose and complex. Debugging and local testing pose challenges for newcomers, particularly when learning about concepts such as time semantics and state handling. Although the APIs exist, they aren't intuitive enough. We also need to simplify operational procedures, such as developing tools and tuning Flink clusters, as these processes can be quite complex. Additionally, implementing one-click rollback for failures and improving state management during dynamic scaling while retaining the last states is vital, as the current large states pose scaling challenges.
ShubhamSharma7 - PeerSpot reviewer
Capability to integrate diverse coding languages in a single notebook greatly enhances workflow
Databricks offers various courses that I can use, whether it's PySpark, Scala, or R. I can leverage all these courses in a single notebook, which is beneficial for clients as they can access various tools in one place whenever needed. This is quite significant. I usually work with PySpark based on client requirements. After coding, I feed the Databricks notebooks into the ADF pipeline for updates. Databricks' capability to process data in parallel enhances data processing speed. Furthermore, I can connect our Databricks notebook directly with Power BI and other visualization tools like Qlik. Once we develop code, it allows us to transform raw data into visualizations for clients using analysis diagrams, which is very helpful.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The top feature of Apache Flink is its low latency for fast, real-time data. Another great feature is the real-time indicators and alerts which make a big difference when it comes to data processing and analysis."
"The product helps us to create both simple and complex data processing tasks. Over time, it has facilitated integration and navigation across multiple data sources tailored to each client's needs. We use Apache Flink to control our clients' installations."
"The documentation is very good."
"This is truly a real-time solution."
"It is user-friendly and the reporting is good."
"Allows us to process batch data, stream to real-time and build pipelines."
"Apache Flink is meant for low latency applications. You take one event opposite if you want to maintain a certain state. When another event comes and you want to associate those events together, in-memory state management was a key feature for us."
"Another feature is how Flink handles its radiuses. It has something called the checkpointing concept. You're dealing with billions and billions of requests, so your system is going to fail in large storage systems. Flink handles this by using the concept of checkpointing and savepointing, where they write the aggregated state into some separate storage. So in case of failure, you can basically recall from that state and come back."
"I haven't heard about any major stability issues. At this time I feel like it's stable."
"The setup was straightforward."
"One of the features provides nice interactive clusters, or compute instances that you don't really need to manage often."
"The initial setup phase of Databricks was good."
"What I like about Databricks is that it's one of the most popular platforms that give access to folks who are trying not just to do exploratory work on the data but also go ahead and build advanced modeling and machine learning on top of that."
"The tool helps with data processing and analytics with large-scale data or big data since it is associated with managing data at a large scale."
"When we have a huge volume of data that we want to process with speed, velocity, and volume, we go through Databricks."
"I work in the data science field and I found Databricks to be very useful."
 

Cons

"Apache Flink is very powerful, but it can be challenging for beginners because it requires prior experience with similar tools and technologies, such as Kafka and batch processing."
"In a future release, they could improve on making the error descriptions more clear."
"The machine learning library is not very flexible."
"In terms of improvement, there should be better reporting. You can integrate with reporting solutions but Flink doesn't offer it themselves."
"One way to improve Flink would be to enhance integration between different ecosystems. For example, there could be more integration with other big data vendors and platforms similar in scope to how Apache Flink works with Cloudera. Apache Flink is a part of the same ecosystem as Cloudera, and for batch processing it's actually very useful but for real-time processing there could be more development with regards to the big data capabilities amongst the various ecosystems out there."
"In terms of stability with Flink, it is something that you have to deal with every time. Stability is the number one problem that we have seen with Flink, and it really depends on the kind of problem that you're trying to solve."
"PyFlink is not as fully featured as Python itself, so there are some limitations to what you can do with it."
"Apache Flink's documentation should be available in more languages."
"I believe that this product could be improved by becoming more user-friendly."
"The data visualization for this solution could be improved. They have started to roll out a data visualization tool inside Databricks but it is in the early stages. It's not comparable to a solution like Power BI, Luca, or Tableau."
"Instead of relying on a massive instance, the solution should offer micro partition levels. They're working on it, however, they need to implement it to help the solution run more effectively."
"The product cannot be integrated with a popular coding IDE."
"Cluster failure is one of the biggest weaknesses I notice in our Databricks."
"Some of the error messages that we receive are too vague, saying things like "unknown exception", and these should be improved to make it easier for developers to debug problems."
"In the next release, I would like to see more optimization features."
"Databricks may not be as easy to use as other tools, but if you simplify a tool too much, it won't have the flexibility to go in-depth. Databricks is completely in the programmer's hands. I prefer flexibility rather than simplicity."
 

Pricing and Cost Advice

"It's an open source."
"Apache Flink is open source so we pay no licensing for the use of the software."
"The solution is open-source, which is free."
"It's an open-source solution."
"This is an open-source platform that can be used free of charge."
"The price is okay. It's competitive."
"We only pay for the Azure compute behind the solution."
"We have only incurred the cost of our AWS cloud services. This is because during this period, Databricks provided us with an extended evaluation period, and we have not spent much money yet. We are just starting to incur costs this month, I will know more later on the full cost perspective."
"Whenever we want to find the actual costing, we have to send an email to Databricks, so having the information available on the internet would be helpful."
"The solution requires a subscription."
"The cost is around $600,000 for 50 users."
"The solution is based on a licensing model."
"We find Databricks to be very expensive, although this improved when we found out how to shut it down at night."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
868,759 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
22%
Retailer
11%
Computer Software Company
11%
Manufacturing Company
7%
Financial Services Firm
18%
Computer Software Company
9%
Manufacturing Company
9%
Healthcare Company
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business5
Midsize Enterprise3
Large Enterprise11
By reviewers
Company SizeCount
Small Business25
Midsize Enterprise12
Large Enterprise56
 

Questions from the Community

What do you like most about Apache Flink?
The product helps us to create both simple and complex data processing tasks. Over time, it has facilitated integration and navigation across multiple data sources tailored to each client's needs. ...
What is your experience regarding pricing and costs for Apache Flink?
The solution is expensive. I rate the product’s pricing a nine out of ten, where one is cheap and ten is expensive.
What needs improvement with Apache Flink?
Apache should provide more examples and sample code related to streaming to help me better adapt and utilize the tool. There is a need for increased awareness and education, especially around best ...
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
Which would you choose - Databricks or Azure Stream Analytics?
Databricks is an easy-to-set-up and versatile tool for data management, analysis, and business analytics. For analytics teams that have to interpret data to further the business goals of their orga...
 

Also Known As

Flink
Databricks Unified Analytics, Databricks Unified Analytics Platform, Redash
 

Overview

 

Sample Customers

LogRhythm, Inc., Inter-American Development Bank, Scientific Technologies Corporation, LotLinx, Inc., Benevity, Inc.
Elsevier, MyFitnessPal, Sharethrough, Automatic Labs, Celtra, Radius Intelligence, Yesware
Find out what your peers are saying about Apache Flink vs. Databricks and other solutions. Updated: September 2025.
868,759 professionals have used our research since 2012.