Try our new research platform with insights from 80,000+ expert users

Apache Flink vs Google Cloud Dataflow comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 17, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Flink
Ranking in Streaming Analytics
5th
Average Rating
7.8
Reviews Sentiment
6.9
Number of Reviews
18
Ranking in other categories
No ranking in other categories
Google Cloud Dataflow
Ranking in Streaming Analytics
6th
Average Rating
8.0
Reviews Sentiment
7.3
Number of Reviews
13
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of May 2025, in the Streaming Analytics category, the mindshare of Apache Flink is 13.8%, up from 9.6% compared to the previous year. The mindshare of Google Cloud Dataflow is 7.1%, down from 7.2% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics
 

Featured Reviews

Aswini Atibudhi - PeerSpot reviewer
Enables robust real-time data processing but documentation needs refinement
Apache Flink is very powerful, but it can be challenging for beginners because it requires prior experience with similar tools and technologies, such as Kafka and batch processing. It's essential to have a clear foundation; hence, it can be tough for beginners. However, once they grasp the concepts and have examples or references, it becomes easier. Intermediate users who are integrating with Kafka or other sources may find it smoother. After setting up and understanding the concepts, it becomes quite stable and scalable, allowing for customization of jobs. Every ( /products/every-reviews ) software, including Apache Flink, has room for improvement as it evolves. One key area for enhancement is user-friendliness and the developer experience; improving documentation and API specifications is essential, as they can currently be verbose and complex. Debugging ( /categories/debugging ) and local testing pose challenges for newcomers, particularly when learning about concepts such as time semantics and state handling. Although the APIs exist, they aren't intuitive enough. We also need to simplify operational procedures, such as developing tools and tuning Flink clusters, as these processes can be quite complex. Additionally, implementing one-click rollback for failures and improving state management during dynamic scaling while retaining the last states is vital, as the current large states pose scaling challenges.
Jana Polianskaja - PeerSpot reviewer
Build Scalable Data Pipelines with Apache Beam and Google Cloud Dataflow
As a data engineer, I find several features of Google Cloud Dataflow particularly valuable. The ability to test solutions locally using Direct Runner is crucial for development, allowing me to validate pipelines without incurring the costs of full Dataflow jobs. The unified programming model for both batch and streaming processing is exceptional - requiring only minor code adjustments to optimize for either mode. This flexibility extends to language support, with robust implementations in both Java and Python, allowing teams to leverage their existing expertise. The platform's comprehensive monitoring capabilities are another standout feature. The intuitive interface, Grafana integration, and extensive service connectivity make troubleshooting and performance tracking highly efficient. Furthermore, seamless integration with Google Cloud Composer (managed Airflow) enables sophisticated orchestration of data pipelines.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Allows us to process batch data, stream to real-time and build pipelines."
"Apache Flink is meant for low latency applications. You take one event opposite if you want to maintain a certain state. When another event comes and you want to associate those events together, in-memory state management was a key feature for us."
"With Flink, it provides out-of-the-box checkpointing and state management. It helps us in that way. When Storm used to restart, sometimes we would lose messages. With Flink, it provides guaranteed message processing, which helped us. It also helped us with maintenance or restarts."
"Easy to deploy and manage."
"The documentation is very good."
"It is user-friendly and the reporting is good."
"The top feature of Apache Flink is its low latency for fast, real-time data. Another great feature is the real-time indicators and alerts which make a big difference when it comes to data processing and analysis."
"This is truly a real-time solution."
"Google's support team is good at resolving issues, especially with large data."
"The service is relatively cheap compared to other batch-processing engines."
"The integration within Google Cloud Platform is very good."
"I would rate the overall solution a ten out of ten."
"The product's installation process is easy...The tool's maintenance part is somewhat easy."
"The support team is good and it's easy to use."
"The solution allows us to program in any language we desire."
"Google Cloud Dataflow is useful for streaming and data pipelines."
 

Cons

"The TimeWindow feature is a bit tricky. The timing of the content and the windowing is a bit changed in 1.11. They have introduced watermarks. A watermark is basically associating every data with a timestamp. The timestamp could be anything, and we can provide the timestamp. So, whenever I receive a tweet, I can actually assign a timestamp, like what time did I get that tweet. The watermark helps us to uniquely identify the data. Watermarks are tricky if you use multiple events in the pipeline. For example, you have three resources from different locations, and you want to combine all those inputs and also perform some kind of logic. When you have more than one input screen and you want to collect all the information together, you have to apply TimeWindow all. That means that all the events from the upstream or from the up sources should be in that TimeWindow, and they were coming back. Internally, it is a batch of events that may be getting collected every five minutes or whatever timing is given. Sometimes, the use case for TimeWindow is a bit tricky. It depends on the application as well as on how people have given this TimeWindow. This kind of documentation is not updated. Even the test case documentation is a bit wrong. It doesn't work. Flink has updated the version of Apache Flink, but they have not updated the testing documentation. Therefore, I have to manually understand it. We have also been exploring failure handling. I was looking into changelogs for which they have posted the future plans and what are they going to deliver. We have two concerns regarding this, which have been noted down. I hope in the future that they will provide this functionality. Integration of Apache Flink with other metric services or failure handling data tools needs some kind of update or its in-depth knowledge is required in the documentation. We have a use case where we want to actually analyze or get analytics about how much data we process and how many failures we have. For that, we need to use Tomcat, which is an analytics tool for implementing counters. We can manage reports in the analyzer. This kind of integration is pretty much straightforward. They say that people must be well familiar with all the things before using this type of integration. They have given this complete file, which you can update, but it took some time. There is a learning curve with it, which consumed a lot of time. It is evolving to a newer version, but the documentation is not demonstrating that update. The documentation is not well incorporated. Hopefully, these things will get resolved now that they are implementing it. Failure is another area where it is a bit rigid or not that flexible. We never use this for scaling because complexity is very high in case of a failure. Processing and providing the scaled data back to Apache Flink is a bit challenging. They have this concept of offsetting, which could be simplified."
"In terms of improvement, there should be better reporting. You can integrate with reporting solutions but Flink doesn't offer it themselves."
"Apache Flink's documentation should be available in more languages."
"In terms of stability with Flink, it is something that you have to deal with every time. Stability is the number one problem that we have seen with Flink, and it really depends on the kind of problem that you're trying to solve."
"In a future release, they could improve on making the error descriptions more clear."
"The state maintains checkpoints and they use RocksDB or S3. They are good but sometimes the performance is affected when you use RocksDB for checkpointing."
"There are more libraries that are missing and also maybe more capabilities for machine learning."
"Apache Flink is very powerful, but it can be challenging for beginners because it requires prior experience with similar tools and technologies, such as Kafka and batch processing."
"The authentication part of the product is an area of concern where improvements are required."
"The deployment time could also be reduced."
"They should do a market survey and then make improvements."
"I would like to see improvements in consistency and flexibility for schema design for NoSQL data stored in wide columns."
"When I deploy the product in local errors, a lot of errors pop up which are not always caught. The solution's error logging is bad. It can take a lot of time to debug the errors. It needs to have better logs."
"Google Cloud Data Flow can improve by having full simple integration with Kafka topics. It's not that complicated, but it could improve a bit. The UI is easy to use but the experience could be better. There are other tools available that do a better job."
"I would like Google Cloud Dataflow to be integrated with IT data flow and other related services to make it easier to use as it is a complex tool."
"Promoting the technology more broadly would help increase its adoption."
 

Pricing and Cost Advice

"It's an open-source solution."
"This is an open-source platform that can be used free of charge."
"The solution is open-source, which is free."
"Apache Flink is open source so we pay no licensing for the use of the software."
"It's an open source."
"On a scale from one to ten, where one is cheap, and ten is expensive, I rate Google Cloud Dataflow's pricing a four out of ten."
"The solution is not very expensive."
"Google Cloud is slightly cheaper than AWS."
"The tool is cheap."
"The price of the solution depends on many factors, such as how they pay for tools in the company and its size."
"Google Cloud Dataflow is a cheap solution."
"On a scale from one to ten, where one is cheap, and ten is expensive, I rate the solution's pricing a seven to eight out of ten."
"The solution is cost-effective."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
851,604 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
24%
Computer Software Company
14%
Manufacturing Company
7%
Retailer
5%
Financial Services Firm
17%
Manufacturing Company
13%
Retailer
11%
Computer Software Company
10%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Apache Flink?
The product helps us to create both simple and complex data processing tasks. Over time, it has facilitated integration and navigation across multiple data sources tailored to each client's needs. ...
What is your experience regarding pricing and costs for Apache Flink?
The solution is expensive. I rate the product’s pricing a nine out of ten, where one is cheap and ten is expensive.
What needs improvement with Apache Flink?
Apache should provide more examples and sample code related to streaming to help me better adapt and utilize the tool. There is a need for increased awareness and education, especially around best ...
What do you like most about Google Cloud Dataflow?
The product's installation process is easy...The tool's maintenance part is somewhat easy.
What is your experience regarding pricing and costs for Google Cloud Dataflow?
Pricing is normal. It is part of a package received from Google, and they are not charging us too high.
What needs improvement with Google Cloud Dataflow?
I am not sure, as we built only one job, and it is running on a daily basis. Everything else is managed using BigQuery schedulers and Talend. However, occasionally, dealing with a huge volume of da...
 

Also Known As

Flink
Google Dataflow
 

Overview

 

Sample Customers

LogRhythm, Inc., Inter-American Development Bank, Scientific Technologies Corporation, LotLinx, Inc., Benevity, Inc.
Absolutdata, Backflip Studios, Bluecore, Claritics, Crystalloids, Energyworx, GenieConnect, Leanplum, Nomanini, Redbus, Streak, TabTale
Find out what your peers are saying about Apache Flink vs. Google Cloud Dataflow and other solutions. Updated: April 2025.
851,604 professionals have used our research since 2012.