Try our new research platform with insights from 80,000+ expert users

Apache Flink vs Google Cloud Dataflow comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 17, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Flink
Ranking in Streaming Analytics
6th
Average Rating
7.6
Reviews Sentiment
6.9
Number of Reviews
16
Ranking in other categories
No ranking in other categories
Google Cloud Dataflow
Ranking in Streaming Analytics
7th
Average Rating
7.8
Reviews Sentiment
7.3
Number of Reviews
12
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of April 2025, in the Streaming Analytics category, the mindshare of Apache Flink is 13.2%, up from 9.5% compared to the previous year. The mindshare of Google Cloud Dataflow is 7.4%, up from 7.0% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics
 

Featured Reviews

Ilya Afanasyev - PeerSpot reviewer
A great solution with an intricate system and allows for batch data processing
We value this solution's intricate system because it comes with a state inside the mechanism and product. The system allows us to process batch data, stream to real-time and build pipelines. Additionally, we do not need to process data from the beginning when we pause, and we can continue from the same point where we stopped. It helps us save time as 95% of our pipelines will now be on Amazon, and we'll save money by saving time.
Jana Polianskaja - PeerSpot reviewer
Build Scalable Data Pipelines with Apache Beam and Google Cloud Dataflow
As a data engineer, I find several features of Google Cloud Dataflow particularly valuable. The ability to test solutions locally using Direct Runner is crucial for development, allowing me to validate pipelines without incurring the costs of full Dataflow jobs. The unified programming model for both batch and streaming processing is exceptional - requiring only minor code adjustments to optimize for either mode. This flexibility extends to language support, with robust implementations in both Java and Python, allowing teams to leverage their existing expertise. The platform's comprehensive monitoring capabilities are another standout feature. The intuitive interface, Grafana integration, and extensive service connectivity make troubleshooting and performance tracking highly efficient. Furthermore, seamless integration with Google Cloud Composer (managed Airflow) enables sophisticated orchestration of data pipelines.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The top feature of Apache Flink is its low latency for fast, real-time data. Another great feature is the real-time indicators and alerts which make a big difference when it comes to data processing and analysis."
"The product helps us to create both simple and complex data processing tasks. Over time, it has facilitated integration and navigation across multiple data sources tailored to each client's needs. We use Apache Flink to control our clients' installations."
"The documentation is very good."
"With Flink, it provides out-of-the-box checkpointing and state management. It helps us in that way. When Storm used to restart, sometimes we would lose messages. With Flink, it provides guaranteed message processing, which helped us. It also helped us with maintenance or restarts."
"Apache Flink offers a range of powerful configurations and experiences for development teams. Its strength lies in its development experience and capabilities."
"It provides us the flexibility to deploy it on any cluster without being constrained by cloud-based limitations."
"Allows us to process batch data, stream to real-time and build pipelines."
"This is truly a real-time solution."
"The most valuable features of Google Cloud Dataflow are the integration, it's very simple if you have the complete stack, which we are using. It is overall very easy to use, user-friendly friendly, and cost-effective if you know how to use it. The solution is very flexible for programmers, if you know how to do scripts or program in Python or any other language, it's extremely easy to use."
"I don't need a server running all the time while using the tool. It is also easy to setup. The product offers a pay-as-you-go service."
"The product's installation process is easy...The tool's maintenance part is somewhat easy."
"The most valuable features of Google Cloud Dataflow are scalability and connectivity."
"The integration within Google Cloud Platform is very good."
"The solution allows us to program in any language we desire."
"The best feature of Google Cloud Dataflow is its practical connectedness."
"The service is relatively cheap compared to other batch-processing engines."
 

Cons

"In a future release, they could improve on making the error descriptions more clear."
"The solution could be more user-friendly."
"Apache Flink's documentation should be available in more languages."
"In terms of stability with Flink, it is something that you have to deal with every time. Stability is the number one problem that we have seen with Flink, and it really depends on the kind of problem that you're trying to solve."
"There is a learning curve. It takes time to learn."
"One way to improve Flink would be to enhance integration between different ecosystems. For example, there could be more integration with other big data vendors and platforms similar in scope to how Apache Flink works with Cloudera. Apache Flink is a part of the same ecosystem as Cloudera, and for batch processing it's actually very useful but for real-time processing there could be more development with regards to the big data capabilities amongst the various ecosystems out there."
"PyFlink is not as fully featured as Python itself, so there are some limitations to what you can do with it."
"Apache Flink should improve its data capability and data migration."
"The deployment time could also be reduced."
"The technical support has slight room for improvement."
"Google Cloud Data Flow can improve by having full simple integration with Kafka topics. It's not that complicated, but it could improve a bit. The UI is easy to use but the experience could be better. There are other tools available that do a better job."
"The solution's setup process could be more accessible."
"They should do a market survey and then make improvements."
"When I deploy the product in local errors, a lot of errors pop up which are not always caught. The solution's error logging is bad. It can take a lot of time to debug the errors. It needs to have better logs."
"Promoting the technology more broadly would help increase its adoption."
"The authentication part of the product is an area of concern where improvements are required."
 

Pricing and Cost Advice

"Apache Flink is open source so we pay no licensing for the use of the software."
"The solution is open-source, which is free."
"It's an open source."
"This is an open-source platform that can be used free of charge."
"It's an open-source solution."
"The solution is cost-effective."
"The price of the solution depends on many factors, such as how they pay for tools in the company and its size."
"Google Cloud is slightly cheaper than AWS."
"The tool is cheap."
"Google Cloud Dataflow is a cheap solution."
"On a scale from one to ten, where one is cheap, and ten is expensive, I rate the solution's pricing a seven to eight out of ten."
"The solution is not very expensive."
"On a scale from one to ten, where one is cheap, and ten is expensive, I rate Google Cloud Dataflow's pricing a four out of ten."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
845,040 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
23%
Computer Software Company
16%
Manufacturing Company
7%
Retailer
4%
Financial Services Firm
18%
Manufacturing Company
12%
Retailer
12%
Computer Software Company
11%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Apache Flink?
The product helps us to create both simple and complex data processing tasks. Over time, it has facilitated integration and navigation across multiple data sources tailored to each client's needs. ...
What is your experience regarding pricing and costs for Apache Flink?
The solution is expensive. I rate the product’s pricing a nine out of ten, where one is cheap and ten is expensive.
What needs improvement with Apache Flink?
There are more libraries that are missing and also maybe more capabilities for machine learning. It could have a friendly user interface for pipeline configuration, deployment, and monitoring.
What do you like most about Google Cloud Dataflow?
The product's installation process is easy...The tool's maintenance part is somewhat easy.
What is your experience regarding pricing and costs for Google Cloud Dataflow?
Google Cloud Dataflow costs are primarily driven by compute resources (worker type and count) and data volume. However, other factors like pipeline complexity also contribute significantly to the t...
What needs improvement with Google Cloud Dataflow?
Apache Beam represents a powerful data processing solution that deserves wider recognition in the broader tech community. This technology offers remarkable capabilities for handling data at scale, ...
 

Also Known As

Flink
Google Dataflow
 

Overview

 

Sample Customers

LogRhythm, Inc., Inter-American Development Bank, Scientific Technologies Corporation, LotLinx, Inc., Benevity, Inc.
Absolutdata, Backflip Studios, Bluecore, Claritics, Crystalloids, Energyworx, GenieConnect, Leanplum, Nomanini, Redbus, Streak, TabTale
Find out what your peers are saying about Apache Flink vs. Google Cloud Dataflow and other solutions. Updated: March 2025.
845,040 professionals have used our research since 2012.