Try our new research platform with insights from 80,000+ expert users

Apache Flink vs Azure Stream Analytics comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 17, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Flink
Ranking in Streaming Analytics
5th
Average Rating
7.8
Reviews Sentiment
6.9
Number of Reviews
18
Ranking in other categories
No ranking in other categories
Azure Stream Analytics
Ranking in Streaming Analytics
3rd
Average Rating
8.0
Reviews Sentiment
6.9
Number of Reviews
27
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of July 2025, in the Streaming Analytics category, the mindshare of Apache Flink is 13.9%, up from 9.7% compared to the previous year. The mindshare of Azure Stream Analytics is 9.2%, down from 12.5% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics
 

Featured Reviews

Aswini Atibudhi - PeerSpot reviewer
Enables robust real-time data processing but documentation needs refinement
Apache Flink is very powerful, but it can be challenging for beginners because it requires prior experience with similar tools and technologies, such as Kafka and batch processing. It's essential to have a clear foundation; hence, it can be tough for beginners. However, once they grasp the concepts and have examples or references, it becomes easier. Intermediate users who are integrating with Kafka or other sources may find it smoother. After setting up and understanding the concepts, it becomes quite stable and scalable, allowing for customization of jobs. Every ( /products/every-reviews ) software, including Apache Flink, has room for improvement as it evolves. One key area for enhancement is user-friendliness and the developer experience; improving documentation and API specifications is essential, as they can currently be verbose and complex. Debugging ( /categories/debugging ) and local testing pose challenges for newcomers, particularly when learning about concepts such as time semantics and state handling. Although the APIs exist, they aren't intuitive enough. We also need to simplify operational procedures, such as developing tools and tuning Flink clusters, as these processes can be quite complex. Additionally, implementing one-click rollback for failures and improving state management during dynamic scaling while retaining the last states is vital, as the current large states pose scaling challenges.
SantiagoCordero - PeerSpot reviewer
Native connectors and integration simplify tasks but portfolio complexity needs addressing
There are too many products in the Azure landscape, which sometimes leads to overlap between them. Microsoft continuously releases new products or solutions, which can be frustrating when determining the appropriate features from one solution over another. A cost comparison between products is also not straightforward. They should simplify their portfolio. The Microsoft licensing system is confusing and not easy to understand, and this is something they should address. In the future, I may stop using Stream Analytics and move to other solutions. I discussed Palantir earlier, which is something I want to explore in depth because it allows me to accomplish more efficiently compared to solely using Azure. Additionally, the vendors should make the solution more user-friendly, incorporating low-code and no-code features. This is something I wish to explore further.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The setup was not too difficult."
"Apache Flink offers a range of powerful configurations and experiences for development teams. Its strength lies in its development experience and capabilities."
"Apache Flink is meant for low latency applications. You take one event opposite if you want to maintain a certain state. When another event comes and you want to associate those events together, in-memory state management was a key feature for us."
"This is truly a real-time solution."
"Allows us to process batch data, stream to real-time and build pipelines."
"The documentation is very good."
"Easy to deploy and manage."
"Apache Flink's best feature is its data streaming tool."
"Cloud tools and cloud services enable flexibility and lower entry barriers for Taiwanese enterprises."
"Any time I needed assistance, they were helpful."
"Technical support is pretty helpful."
"I like the way the UI looks, and the real-time analytics service is aligned to this. That can be helpful if I have to use this on a production service."
"It's a product that can scale."
"It provides the capability to streamline multiple output components."
"The life cycle, report management and crash management features are great."
"The best features of Azure Stream Analytics are that it's easy to set up and configure."
 

Cons

"The TimeWindow feature is a bit tricky. The timing of the content and the windowing is a bit changed in 1.11. They have introduced watermarks. A watermark is basically associating every data with a timestamp. The timestamp could be anything, and we can provide the timestamp. So, whenever I receive a tweet, I can actually assign a timestamp, like what time did I get that tweet. The watermark helps us to uniquely identify the data. Watermarks are tricky if you use multiple events in the pipeline. For example, you have three resources from different locations, and you want to combine all those inputs and also perform some kind of logic. When you have more than one input screen and you want to collect all the information together, you have to apply TimeWindow all. That means that all the events from the upstream or from the up sources should be in that TimeWindow, and they were coming back. Internally, it is a batch of events that may be getting collected every five minutes or whatever timing is given. Sometimes, the use case for TimeWindow is a bit tricky. It depends on the application as well as on how people have given this TimeWindow. This kind of documentation is not updated. Even the test case documentation is a bit wrong. It doesn't work. Flink has updated the version of Apache Flink, but they have not updated the testing documentation. Therefore, I have to manually understand it. We have also been exploring failure handling. I was looking into changelogs for which they have posted the future plans and what are they going to deliver. We have two concerns regarding this, which have been noted down. I hope in the future that they will provide this functionality. Integration of Apache Flink with other metric services or failure handling data tools needs some kind of update or its in-depth knowledge is required in the documentation. We have a use case where we want to actually analyze or get analytics about how much data we process and how many failures we have. For that, we need to use Tomcat, which is an analytics tool for implementing counters. We can manage reports in the analyzer. This kind of integration is pretty much straightforward. They say that people must be well familiar with all the things before using this type of integration. They have given this complete file, which you can update, but it took some time. There is a learning curve with it, which consumed a lot of time. It is evolving to a newer version, but the documentation is not demonstrating that update. The documentation is not well incorporated. Hopefully, these things will get resolved now that they are implementing it. Failure is another area where it is a bit rigid or not that flexible. We never use this for scaling because complexity is very high in case of a failure. Processing and providing the scaled data back to Apache Flink is a bit challenging. They have this concept of offsetting, which could be simplified."
"The state maintains checkpoints and they use RocksDB or S3. They are good but sometimes the performance is affected when you use RocksDB for checkpointing."
"One way to improve Flink would be to enhance integration between different ecosystems. For example, there could be more integration with other big data vendors and platforms similar in scope to how Apache Flink works with Cloudera. Apache Flink is a part of the same ecosystem as Cloudera, and for batch processing it's actually very useful but for real-time processing there could be more development with regards to the big data capabilities amongst the various ecosystems out there."
"There is room for improvement in the initial setup process."
"In terms of improvement, there should be better reporting. You can integrate with reporting solutions but Flink doesn't offer it themselves."
"The machine learning library is not very flexible."
"Apache Flink should improve its data capability and data migration."
"Amazon's CloudFormation templates don't allow for direct deployment in the private subnet."
"The collection and analysis of historical data could be better."
"The only challenge was that the streaming analytics area in Azure Stream Analytics could not meet our company's expectations, making it a component where improvements are required."
"More flexibility in terms of writing queries and accommodating additional facilities would be beneficial."
"Azure Stream Analytics could improve by having clearer metrics as to the scale, more metrics around the data set size that is flowing through it, and performance tuning recommendations."
"There may be some issues when connecting with Microsoft Power BI because we are providing the input and output commands, and there's a chance of it being delayed while connecting."
"The solution's interface could be simpler to understand for non-technical people."
"The solution could be improved by providing better graphics and including support for UI and UX testing."
"The UI should be a little bit better from a usability perspective."
 

Pricing and Cost Advice

"It's an open source."
"The solution is open-source, which is free."
"This is an open-source platform that can be used free of charge."
"It's an open-source solution."
"Apache Flink is open source so we pay no licensing for the use of the software."
"I rate the price of Azure Stream Analytics a four out of five."
"There are different tiers based on retention policies. There are four tiers. The pricing varies based on steaming units and tiers. The standard pricing is $10/hour."
"The current price is substantial."
"The product's price is at par with the other solutions provided by the other cloud service providers in the market."
"We pay approximately $500,000 a year. It's approximately $10,000 a year per license."
"The cost of this solution is less than competitors such as Amazon or Google Cloud."
"Azure Stream Analytics is a little bit expensive."
"When scaling up, the pricing for Azure Stream Analytics can get relatively high. Considering its capabilities compared to other solutions, I would rate it a seven out of ten for cost. However, we've found ways to optimize costs using tools like Databricks for specific tasks."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
860,592 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
24%
Computer Software Company
14%
Manufacturing Company
7%
Retailer
5%
Financial Services Firm
15%
Computer Software Company
15%
Manufacturing Company
9%
Retailer
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Apache Flink?
The product helps us to create both simple and complex data processing tasks. Over time, it has facilitated integration and navigation across multiple data sources tailored to each client's needs. ...
What is your experience regarding pricing and costs for Apache Flink?
The solution is expensive. I rate the product’s pricing a nine out of ten, where one is cheap and ten is expensive.
What needs improvement with Apache Flink?
Apache should provide more examples and sample code related to streaming to help me better adapt and utilize the tool. There is a need for increased awareness and education, especially around best ...
Which would you choose - Databricks or Azure Stream Analytics?
Databricks is an easy-to-set-up and versatile tool for data management, analysis, and business analytics. For analytics teams that have to interpret data to further the business goals of their orga...
What is your experience regarding pricing and costs for Azure Stream Analytics?
Regarding the cost of Azure Stream Analytics, I believe the price is reasonable for the tool.
What needs improvement with Azure Stream Analytics?
There were challenges with Azure Stream Analytics. When I initially started, the learning curve was difficult because I didn't have knowledge of the service. There's setup time required to get it i...
 

Also Known As

Flink
ASA
 

Overview

 

Sample Customers

LogRhythm, Inc., Inter-American Development Bank, Scientific Technologies Corporation, LotLinx, Inc., Benevity, Inc.
Rockwell Automation, Milliman, Honeywell Building Solutions, Arcoflex Automation Solutions, Real Madrid C.F., Aerocrine, Ziosk, Tacoma Public Schools, P97 Networks
Find out what your peers are saying about Apache Flink vs. Azure Stream Analytics and other solutions. Updated: June 2025.
860,592 professionals have used our research since 2012.