Try our new research platform with insights from 80,000+ expert users

Amazon Kinesis vs Apache Flink comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Apr 20, 2025

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Amazon Kinesis
Ranking in Streaming Analytics
2nd
Average Rating
8.0
Reviews Sentiment
7.1
Number of Reviews
28
Ranking in other categories
No ranking in other categories
Apache Flink
Ranking in Streaming Analytics
5th
Average Rating
7.8
Reviews Sentiment
6.9
Number of Reviews
18
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of May 2025, in the Streaming Analytics category, the mindshare of Amazon Kinesis is 8.3%, down from 13.6% compared to the previous year. The mindshare of Apache Flink is 13.8%, up from 9.6% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics
 

Featured Reviews

Rajni Kumar Jha - PeerSpot reviewer
Used for media streaming and live-streaming data
It is not compulsory to use Amazon Kinesis. If you don't want to use the data streaming, you can use just the Kinesis data firehose. Using the Kinesis data firehose is compulsory because we can't store all chats and recordings in Amazon S3 without it. When a call comes in the Amazon Kinesis instance, it will go to Data Streams if we use it. Otherwise, it will go to the Kinesis data firehose, where we need to define the S3 bucket path, and it will go to Amazon S3. So, without the Kinesis data firehose, we can't store all the chats and recordings in Amazon S3. Using Amazon Kinesis totally depends upon the user's requirements. If you want to use live streaming for the data lake or data analyst team, you need to use Amazon Kinesis. If you don't want to use it, you can directly use the Kinesis data firehose, which will be stored in Amazon S3. Overall, I rate the solution an eight out of ten.
Aswini Atibudhi - PeerSpot reviewer
Enables robust real-time data processing but documentation needs refinement
Apache Flink is very powerful, but it can be challenging for beginners because it requires prior experience with similar tools and technologies, such as Kafka and batch processing. It's essential to have a clear foundation; hence, it can be tough for beginners. However, once they grasp the concepts and have examples or references, it becomes easier. Intermediate users who are integrating with Kafka or other sources may find it smoother. After setting up and understanding the concepts, it becomes quite stable and scalable, allowing for customization of jobs. Every ( /products/every-reviews ) software, including Apache Flink, has room for improvement as it evolves. One key area for enhancement is user-friendliness and the developer experience; improving documentation and API specifications is essential, as they can currently be verbose and complex. Debugging ( /categories/debugging ) and local testing pose challenges for newcomers, particularly when learning about concepts such as time semantics and state handling. Although the APIs exist, they aren't intuitive enough. We also need to simplify operational procedures, such as developing tools and tuning Flink clusters, as these processes can be quite complex. Additionally, implementing one-click rollback for failures and improving state management during dynamic scaling while retaining the last states is vital, as the current large states pose scaling challenges.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Kinesis is a fully managed program streaming application. You can manage any infrastructure. It is also scalable. Kinesis can handle any amount of data streaming and process data from hundreds, thousands of processes in every source with very low latency."
"Its scalability is very high. There is no maintenance and there is no throughput latency. I think data scalability is high, too. You can ingest gigabytes of data within seconds or milliseconds."
"From my experience, one of the most valuable features is the ability to track silent events on endpoints. Previously, these events might have gone unnoticed, but now we can access them within the product range. For example, if a customer reports that their calls are not reaching the portal files, we can use this feature to troubleshoot and optimize the system."
"Everything is hosted and simple."
"The most valuable feature of Amazon Kinesis is real-time data streaming."
"I like the ease of use and how we can quickly get the configurations done, making it pretty straightforward and stable."
"The product's initial setup phase is not difficult because we are using the tool on the cloud."
"The scalability is pretty good."
"The documentation is very good."
"This is truly a real-time solution."
"Another feature is how Flink handles its radiuses. It has something called the checkpointing concept. You're dealing with billions and billions of requests, so your system is going to fail in large storage systems. Flink handles this by using the concept of checkpointing and savepointing, where they write the aggregated state into some separate storage. So in case of failure, you can basically recall from that state and come back."
"Apache Flink is meant for low latency applications. You take one event opposite if you want to maintain a certain state. When another event comes and you want to associate those events together, in-memory state management was a key feature for us."
"The setup was not too difficult."
"It is user-friendly and the reporting is good."
"The product helps us to create both simple and complex data processing tasks. Over time, it has facilitated integration and navigation across multiple data sources tailored to each client's needs. We use Apache Flink to control our clients' installations."
"Apache Flink allows you to reduce latency and process data in real-time, making it ideal for such scenarios."
 

Cons

"There could be valid data in Kinesis that is not being processed, which affects stability. Although it rarely happens, this issue has been observed in many deployments, making it not completely stable."
"For me, especially with video streams, there's sometimes a kind of delay when the data has to be pumped to other services. This delay could be improved in Kinesis, or especially the Kinesis Video Streams, which is being used for different use cases for Amazon Connect. With that improvement, a lot of other use cases of Amazon Connect integrating with third-party analytic tools would be easier."
"One thing that would be nice would be a policy for increasing the number of Kinesis streams because that's the one thing that's constant. You can change it in real time, but somebody has to change it, or you have to set some kind of meter. So, auto-scaling of adding and removing streams would be nice."
"Amazon Kinesis should improve its limits."
"Something else to mention is that we use Kinesis with Lambda a lot and the fact that you can only connect one Stream to one Lambda, I find is a limiting factor. I would definitely recommend to remove that constraint."
"I suggest integrating additional features, such as incorporating Amazon Pinpoint or Amazon Connect as bundled offerings, rather than deploying them as separate services."
"In order to do a successful setup, the person handling the implementation needs to know the solution very well. You can't just come into it blind and with little to no experience."
"Kinesis can be expensive, especially when dealing with large volumes of data."
"The state maintains checkpoints and they use RocksDB or S3. They are good but sometimes the performance is affected when you use RocksDB for checkpointing."
"PyFlink is not as fully featured as Python itself, so there are some limitations to what you can do with it."
"In a future release, they could improve on making the error descriptions more clear."
"The machine learning library is not very flexible."
"Apache should provide more examples and sample code related to streaming to help me better adapt and utilize the tool."
"In terms of stability with Flink, it is something that you have to deal with every time. Stability is the number one problem that we have seen with Flink, and it really depends on the kind of problem that you're trying to solve."
"Amazon's CloudFormation templates don't allow for direct deployment in the private subnet."
"In terms of improvement, there should be better reporting. You can integrate with reporting solutions but Flink doesn't offer it themselves."
 

Pricing and Cost Advice

"I rate the product price a five on a scale of one to ten, where one is cheap, and ten is expensive."
"The product falls on a bit of an expensive side."
"Amazon Kinesis pricing is sometimes reasonable and sometimes could be better, depending on the planning, so it's a five out of ten for me."
"In general, cloud services are very convenient to use, even if we have to pay a bit more, as we know what we are paying for and can focus on other tasks."
"Amazon Kinesis is an expensive solution."
"The tool's pricing is cheap."
"The pricing depends on the use cases and the level of usage. If you wanted to use Kinesis for different use cases, there's definitely a cheaper base cost involved. However, it's not entirely cheap, as different use cases might require different levels of Kinesis usage."
"The tool's entry price is cheap. However, pricing increases with data volume."
"It's an open source."
"Apache Flink is open source so we pay no licensing for the use of the software."
"It's an open-source solution."
"The solution is open-source, which is free."
"This is an open-source platform that can be used free of charge."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
851,604 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
18%
Financial Services Firm
17%
Manufacturing Company
10%
Retailer
5%
Financial Services Firm
24%
Computer Software Company
14%
Manufacturing Company
7%
Retailer
5%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Amazon Kinesis?
Amazon Kinesis's main purpose is to provide near real-time data streaming at a consistent 2Mbps rate, which is really impressive.
What is your experience regarding pricing and costs for Amazon Kinesis?
Amazon Kinesis is moderately priced. In comparison with other competitors, it is fairly priced, however, if they reduced the price a little, it could add more value to customers.
What needs improvement with Amazon Kinesis?
I do not see any scope for improvement as it does what it is supposed to do. No changes are required. Since it's predominantly a back-end service, any end-user isn't going to interact with it direc...
What do you like most about Apache Flink?
The product helps us to create both simple and complex data processing tasks. Over time, it has facilitated integration and navigation across multiple data sources tailored to each client's needs. ...
What is your experience regarding pricing and costs for Apache Flink?
The solution is expensive. I rate the product’s pricing a nine out of ten, where one is cheap and ten is expensive.
What needs improvement with Apache Flink?
Apache should provide more examples and sample code related to streaming to help me better adapt and utilize the tool. There is a need for increased awareness and education, especially around best ...
 

Also Known As

Amazon AWS Kinesis, AWS Kinesis, Kinesis
Flink
 

Overview

 

Sample Customers

Zillow, Netflix, Sonos
LogRhythm, Inc., Inter-American Development Bank, Scientific Technologies Corporation, LotLinx, Inc., Benevity, Inc.
Find out what your peers are saying about Amazon Kinesis vs. Apache Flink and other solutions. Updated: April 2025.
851,604 professionals have used our research since 2012.