Try our new research platform with insights from 80,000+ expert users

Apache Spark Streaming vs Azure Stream Analytics comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 17, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Spark Streaming
Ranking in Streaming Analytics
11th
Average Rating
8.0
Reviews Sentiment
7.4
Number of Reviews
12
Ranking in other categories
No ranking in other categories
Azure Stream Analytics
Ranking in Streaming Analytics
4th
Average Rating
7.8
Reviews Sentiment
6.7
Number of Reviews
28
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of August 2025, in the Streaming Analytics category, the mindshare of Apache Spark Streaming is 3.1%, down from 3.7% compared to the previous year. The mindshare of Azure Stream Analytics is 8.8%, down from 12.5% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics
 

Featured Reviews

Venkata Phaneendra Reddy Janga - PeerSpot reviewer
Improved data latency and integration with diverse data sources enables robust real-time processing
The best feature of Apache Spark Streaming is that it's built upon the Spark SQL engine. This is easy for someone coming from a SQL background to work with real-time data, even if they are new to real-time processing. They can quickly get started using the Spark SQL engine. Another valuable feature is that we can control many aspects such as the configuration of the engine, memory management, and have a checkpointing mechanism that allows us to manually start or restart jobs from a specific point. This is particularly useful for restoring messages of a Kafka topic from a specific date and time using the checkpointing mechanism. The integration with Spark's ecosystems such as MLlib and GraphX has significant potential, although I have not worked on that part as we focus mainly on data engineering. We can handle late-arriving data with Apache Spark Streaming. Sometimes aggregation results might be missed if data arrives out of order, but features such as windowing allow us to manage out-of-order data by specifying a watermark time. Recently released mechanisms to query the state make it easier to handle data programmatically.
SantiagoCordero - PeerSpot reviewer
Native connectors and integration simplify tasks but portfolio complexity needs addressing
There are too many products in the Azure landscape, which sometimes leads to overlap between them. Microsoft continuously releases new products or solutions, which can be frustrating when determining the appropriate features from one solution over another. A cost comparison between products is also not straightforward. They should simplify their portfolio. The Microsoft licensing system is confusing and not easy to understand, and this is something they should address. In the future, I may stop using Stream Analytics and move to other solutions. I discussed Palantir earlier, which is something I want to explore in depth because it allows me to accomplish more efficiently compared to solely using Azure. Additionally, the vendors should make the solution more user-friendly, incorporating low-code and no-code features. This is something I wish to explore further.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The solution is very stable and reliable."
"Apache Spark's capabilities for machine learning are quite extensive and can be used in a low-code way."
"The platform’s most valuable feature for processing real-time data is its ability to handle continuous data streams."
"Apache Spark Streaming's most valuable feature is near real-time analytics. The developers can build APIs easily for a code-steaming pipeline. The solutions have an ecosystem of integration with other stock services."
"It's the fastest solution on the market with low latency data on data transformations."
"By integrating Apache Spark Streaming, the data freshness rate, and latency have significantly improved from 24-hour batch processing to less than one minute, facilitating faster communication to downstream systems, aiding marketing campaigns."
"Spark Streaming is critical, quite stable, full-featured, and scalable."
"The solution is better than average and some of the valuable features include efficiency and stability."
"It provides the capability to streamline multiple output components."
"I like the IoT part. We have mostly used Azure Stream Analytics services for it"
"Real-time analytics is the most valuable feature of this solution. I can send the collected data to Power BI in real time."
"The integrations for this solution are easy to use and there is flexibility in integrating the tool with Azure Stream Analytics."
"It's easy to implement and maintain pipelines with minimal complexity."
"Cloud tools and cloud services enable flexibility and lower entry barriers for Taiwanese enterprises."
"It was easy for me to use from the beginning. I am accustomed to working with Microsoft."
"The most valuable features of Azure Stream Analytics are the ease of provisioning and the interface is not terribly complex."
 

Cons

"There could be an improvement in the area of the user configuration section, it should be less developer-focused and more business user-focused."
"The cost and load-related optimizations are areas where the tool lacks and needs improvement."
"The debugging aspect could use some improvement."
"Integrating event-level streaming capabilities could be beneficial."
"It was resource-intensive, even for small-scale applications."
"We don't have enough experience to be judgmental about its flaws."
"In terms of improvement, the UI could be better."
"The initial setup is quite complex."
"The solution’s customer support could be improved."
"There are too many products in the Azure landscape, which sometimes leads to overlap between them."
"More flexibility in terms of writing queries and accommodating additional facilities would be beneficial."
"The solution offers a free trial, however, it is too short."
"Early in the process, we had some issues with stability."
"There is a lack of technical support from Microsoft's local office, particularly in Taiwan."
"It is not complex, but it requires some development skills. When the data is sent from Azure Stream Analytics to Power BI, I don't have the access to modify the data. I can't customize or edit the data or do some queries. All queries need to be done in the Azure Stream Analytics."
"One area that could use improvement is the handling of data validation. Currently, there is a review process, but sometimes the validation fails even before the job is executed. This results in wasted time as we have to rerun the job to identify the failure."
 

Pricing and Cost Advice

"People pay for Apache Spark Streaming as a service."
"Spark is an affordable solution, especially considering its open-source nature."
"I was using the open-source community version, which was self-hosted."
"On a scale from one to ten, where one is expensive, or not cost-effective, and ten is cheap, I rate the price a seven."
"The licensing for this product is payable on a 'pay as you go' basis. This means that the cost is only based on data volume, and the frequency that the solution is used."
"Azure Stream Analytics is a little bit expensive."
"I rate the price of Azure Stream Analytics a four out of five."
"The product's price is at par with the other solutions provided by the other cloud service providers in the market."
"When scaling up, the pricing for Azure Stream Analytics can get relatively high. Considering its capabilities compared to other solutions, I would rate it a seven out of ten for cost. However, we've found ways to optimize costs using tools like Databricks for specific tasks."
"The current price is substantial."
"There are different tiers based on retention policies. There are four tiers. The pricing varies based on steaming units and tiers. The standard pricing is $10/hour."
"The cost of this solution is less than competitors such as Amazon or Google Cloud."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
865,164 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
22%
Financial Services Firm
21%
University
5%
Manufacturing Company
5%
Financial Services Firm
15%
Computer Software Company
14%
Manufacturing Company
9%
Retailer
7%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Apache Spark Streaming?
Apache Spark Streaming is versatile. You can use it for competitive intelligence, gathering data from competitors, or for internal tasks like monitoring workflows.
What needs improvement with Apache Spark Streaming?
We don't have enough experience to be judgmental about its flaws, as we've only used stable features like batch micro-batch. Integration poses no problem; however, I don't use some features and can...
What is your primary use case for Apache Spark Streaming?
We use Spark Streaming in a micro-batch region. It's not a full real-time system, but it offers high performance and low latency.
Which would you choose - Databricks or Azure Stream Analytics?
Databricks is an easy-to-set-up and versatile tool for data management, analysis, and business analytics. For analytics teams that have to interpret data to further the business goals of their orga...
What is your experience regarding pricing and costs for Azure Stream Analytics?
The solution does not need any license; it comes with your subscription.
What needs improvement with Azure Stream Analytics?
It does not always give you the right reason or the correct reason. For example, if a service is stopped, it just tells you that it stopped and started. It does not give you any good insight as to ...
 

Also Known As

Spark Streaming
ASA
 

Overview

 

Sample Customers

UC Berkeley AMPLab, Amazon, Alibaba Taobao, Kenshoo, eBay Inc.
Rockwell Automation, Milliman, Honeywell Building Solutions, Arcoflex Automation Solutions, Real Madrid C.F., Aerocrine, Ziosk, Tacoma Public Schools, P97 Networks
Find out what your peers are saying about Apache Spark Streaming vs. Azure Stream Analytics and other solutions. Updated: July 2025.
865,164 professionals have used our research since 2012.