Try our new research platform with insights from 80,000+ expert users

Apache Flink vs Apache Spark Streaming comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 17, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Flink
Ranking in Streaming Analytics
5th
Average Rating
7.8
Reviews Sentiment
6.9
Number of Reviews
18
Ranking in other categories
No ranking in other categories
Apache Spark Streaming
Ranking in Streaming Analytics
11th
Average Rating
8.0
Reviews Sentiment
7.1
Number of Reviews
12
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of August 2025, in the Streaming Analytics category, the mindshare of Apache Flink is 14.5%, up from 9.9% compared to the previous year. The mindshare of Apache Spark Streaming is 3.1%, down from 3.7% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics
 

Featured Reviews

Aswini Atibudhi - PeerSpot reviewer
Enables robust real-time data processing but documentation needs refinement
Apache Flink is very powerful, but it can be challenging for beginners because it requires prior experience with similar tools and technologies, such as Kafka and batch processing. It's essential to have a clear foundation; hence, it can be tough for beginners. However, once they grasp the concepts and have examples or references, it becomes easier. Intermediate users who are integrating with Kafka or other sources may find it smoother. After setting up and understanding the concepts, it becomes quite stable and scalable, allowing for customization of jobs. Every software, including Apache Flink, has room for improvement as it evolves. One key area for enhancement is user-friendliness and the developer experience; improving documentation and API specifications is essential, as they can currently be verbose and complex. Debugging and local testing pose challenges for newcomers, particularly when learning about concepts such as time semantics and state handling. Although the APIs exist, they aren't intuitive enough. We also need to simplify operational procedures, such as developing tools and tuning Flink clusters, as these processes can be quite complex. Additionally, implementing one-click rollback for failures and improving state management during dynamic scaling while retaining the last states is vital, as the current large states pose scaling challenges.
Venkata Phaneendra Reddy Janga - PeerSpot reviewer
Improved data latency and integration with diverse data sources enables robust real-time processing
The best feature of Apache Spark Streaming is that it's built upon the Spark SQL engine. This is easy for someone coming from a SQL background to work with real-time data, even if they are new to real-time processing. They can quickly get started using the Spark SQL engine. Another valuable feature is that we can control many aspects such as the configuration of the engine, memory management, and have a checkpointing mechanism that allows us to manually start or restart jobs from a specific point. This is particularly useful for restoring messages of a Kafka topic from a specific date and time using the checkpointing mechanism. The integration with Spark's ecosystems such as MLlib and GraphX has significant potential, although I have not worked on that part as we focus mainly on data engineering. We can handle late-arriving data with Apache Spark Streaming. Sometimes aggregation results might be missed if data arrives out of order, but features such as windowing allow us to manage out-of-order data by specifying a watermark time. Recently released mechanisms to query the state make it easier to handle data programmatically.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"It provides us the flexibility to deploy it on any cluster without being constrained by cloud-based limitations."
"The documentation is very good."
"Apache Flink's best feature is its data streaming tool."
"Apache Flink is meant for low latency applications. You take one event opposite if you want to maintain a certain state. When another event comes and you want to associate those events together, in-memory state management was a key feature for us."
"The ease of usage, even for complex tasks, stands out."
"Apache Flink allows you to reduce latency and process data in real-time, making it ideal for such scenarios."
"The product helps us to create both simple and complex data processing tasks. Over time, it has facilitated integration and navigation across multiple data sources tailored to each client's needs. We use Apache Flink to control our clients' installations."
"It is user-friendly and the reporting is good."
"Spark Streaming is critical, quite stable, full-featured, and scalable."
"Apache Spark Streaming has features like checkpointing and Streaming API that are useful."
"As an open-source solution, using it is basically free."
"The solution is better than average and some of the valuable features include efficiency and stability."
"The platform’s most valuable feature for processing real-time data is its ability to handle continuous data streams."
"Apache Spark Streaming is versatile. You can use it for competitive intelligence, gathering data from competitors, or for internal tasks like monitoring workflows."
"Apache Spark Streaming was straightforward in terms of maintenance. It was actively developed, and migrating from an older to a newer version was quite simple."
"Apache Spark Streaming's most valuable feature is near real-time analytics. The developers can build APIs easily for a code-steaming pipeline. The solutions have an ecosystem of integration with other stock services."
 

Cons

"Apache Flink is very powerful, but it can be challenging for beginners because it requires prior experience with similar tools and technologies, such as Kafka and batch processing."
"Apache Flink should improve its data capability and data migration."
"Apache should provide more examples and sample code related to streaming to help me better adapt and utilize the tool."
"The machine learning library is not very flexible."
"In terms of improvement, there should be better reporting. You can integrate with reporting solutions but Flink doesn't offer it themselves."
"There are more libraries that are missing and also maybe more capabilities for machine learning."
"One way to improve Flink would be to enhance integration between different ecosystems. For example, there could be more integration with other big data vendors and platforms similar in scope to how Apache Flink works with Cloudera. Apache Flink is a part of the same ecosystem as Cloudera, and for batch processing it's actually very useful but for real-time processing there could be more development with regards to the big data capabilities amongst the various ecosystems out there."
"We have a machine learning team that works with Python, but Apache Flink does not have full support for the language."
"There could be an improvement in the area of the user configuration section, it should be less developer-focused and more business user-focused."
"It was resource-intensive, even for small-scale applications."
"The service structure of Apache Spark Streaming can improve. There are a lot of issues with memory management and latency. There is no real-time analytics. We recommend it for the use cases where there is a five-second latency, but not for a millisecond, an IOT-based, or the detection anomaly-based. Flink as a service is much better."
"We don't have enough experience to be judgmental about its flaws."
"One improvement I would expect is real-time processing instead of micro-batch or near real-time."
"The initial setup is quite complex."
"One improvement I would expect is real-time processing instead of micro-batch or near real-time."
"The cost and load-related optimizations are areas where the tool lacks and needs improvement."
 

Pricing and Cost Advice

"This is an open-source platform that can be used free of charge."
"It's an open-source solution."
"It's an open source."
"Apache Flink is open source so we pay no licensing for the use of the software."
"The solution is open-source, which is free."
"Spark is an affordable solution, especially considering its open-source nature."
"On a scale from one to ten, where one is expensive, or not cost-effective, and ten is cheap, I rate the price a seven."
"People pay for Apache Spark Streaming as a service."
"I was using the open-source community version, which was self-hosted."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
865,295 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
22%
Computer Software Company
12%
Retailer
8%
Manufacturing Company
7%
Computer Software Company
22%
Financial Services Firm
21%
University
5%
Manufacturing Company
5%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Apache Flink?
The product helps us to create both simple and complex data processing tasks. Over time, it has facilitated integration and navigation across multiple data sources tailored to each client's needs. ...
What is your experience regarding pricing and costs for Apache Flink?
The solution is expensive. I rate the product’s pricing a nine out of ten, where one is cheap and ten is expensive.
What needs improvement with Apache Flink?
Apache should provide more examples and sample code related to streaming to help me better adapt and utilize the tool. There is a need for increased awareness and education, especially around best ...
What do you like most about Apache Spark Streaming?
Apache Spark Streaming is versatile. You can use it for competitive intelligence, gathering data from competitors, or for internal tasks like monitoring workflows.
What needs improvement with Apache Spark Streaming?
We don't have enough experience to be judgmental about its flaws, as we've only used stable features like batch micro-batch. Integration poses no problem; however, I don't use some features and can...
What is your primary use case for Apache Spark Streaming?
We use Spark Streaming in a micro-batch region. It's not a full real-time system, but it offers high performance and low latency.
 

Also Known As

Flink
Spark Streaming
 

Overview

 

Sample Customers

LogRhythm, Inc., Inter-American Development Bank, Scientific Technologies Corporation, LotLinx, Inc., Benevity, Inc.
UC Berkeley AMPLab, Amazon, Alibaba Taobao, Kenshoo, eBay Inc.
Find out what your peers are saying about Apache Flink vs. Apache Spark Streaming and other solutions. Updated: July 2025.
865,295 professionals have used our research since 2012.