Try our new research platform with insights from 80,000+ expert users

Apache Flink vs Apache Spark Streaming comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 17, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Flink
Ranking in Streaming Analytics
3rd
Average Rating
7.8
Reviews Sentiment
6.7
Number of Reviews
19
Ranking in other categories
No ranking in other categories
Apache Spark Streaming
Ranking in Streaming Analytics
10th
Average Rating
7.8
Reviews Sentiment
6.4
Number of Reviews
17
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of February 2026, in the Streaming Analytics category, the mindshare of Apache Flink is 11.3%, down from 12.1% compared to the previous year. The mindshare of Apache Spark Streaming is 3.9%, up from 3.1% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics Market Share Distribution
ProductMarket Share (%)
Apache Flink11.3%
Apache Spark Streaming3.9%
Other84.8%
Streaming Analytics
 

Featured Reviews

Aswini Atibudhi - PeerSpot reviewer
Distinguished AI Leader at Walmart Global Tech at Walmart
Enables robust real-time data processing but documentation needs refinement
Apache Flink is very powerful, but it can be challenging for beginners because it requires prior experience with similar tools and technologies, such as Kafka and batch processing. It's essential to have a clear foundation; hence, it can be tough for beginners. However, once they grasp the concepts and have examples or references, it becomes easier. Intermediate users who are integrating with Kafka or other sources may find it smoother. After setting up and understanding the concepts, it becomes quite stable and scalable, allowing for customization of jobs. Every software, including Apache Flink, has room for improvement as it evolves. One key area for enhancement is user-friendliness and the developer experience; improving documentation and API specifications is essential, as they can currently be verbose and complex. Debugging and local testing pose challenges for newcomers, particularly when learning about concepts such as time semantics and state handling. Although the APIs exist, they aren't intuitive enough. We also need to simplify operational procedures, such as developing tools and tuning Flink clusters, as these processes can be quite complex. Additionally, implementing one-click rollback for failures and improving state management during dynamic scaling while retaining the last states is vital, as the current large states pose scaling challenges.
Himansu Jena - PeerSpot reviewer
Sr Project Manager at Raj Subhatech
Efficient real-time data management and analysis with advanced features
There are various ways we can improve Apache Spark Streaming through best practices. The initial part requires attention to batch interval tuning, which helps small intervals in micro batches based on latency requirements and helps prevent back pressure. We can use data formats such as Parquet or ORC for storage that needs faster reads and leveraging feature predicate push-down optimizations. We can implement serialization which helps with any Kyro in terms of .NET or Java. We have boxing and unboxing serialization for XML and JSON for converting key-pair values stored in browser. We can also implement caching mechanisms for storing and recomputing multiple operations. We can use specified joins which help with smaller databases, and distributed joins can minimize users. We can implement project optimization memory for CPU efficiency, known as Tungsten. Additionally, load balancing, checkpointing, and schema evaluation are areas to consider based on performance and bottlenecks. We can use Bugzilla tools for tracking and Splunk to monitor the performance of process systems, utilization, and performance based on data frames or data sets.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The top feature of Apache Flink is its low latency for fast, real-time data. Another great feature is the real-time indicators and alerts which make a big difference when it comes to data processing and analysis."
"The documentation is very good."
"Apache Flink is meant for low latency applications. You take one event opposite if you want to maintain a certain state. When another event comes and you want to associate those events together, in-memory state management was a key feature for us."
"Easy to deploy and manage."
"Apache Flink's best feature is its data streaming tool."
"Another feature is how Flink handles its radiuses. It has something called the checkpointing concept. You're dealing with billions and billions of requests, so your system is going to fail in large storage systems. Flink handles this by using the concept of checkpointing and savepointing, where they write the aggregated state into some separate storage. So in case of failure, you can basically recall from that state and come back."
"Allows us to process batch data, stream to real-time and build pipelines."
"Apache Flink offers a range of powerful configurations and experiences for development teams. Its strength lies in its development experience and capabilities."
"It's the fastest solution on the market with low latency data on data transformations."
"The solution is better than average and some of the valuable features include efficiency and stability."
"As an open-source solution, using it is basically free."
"The platform’s most valuable feature for processing real-time data is its ability to handle continuous data streams."
"I appreciate Apache Spark Streaming's micro-batching capabilities; the watermarking functionality and related features are quite good."
"By integrating Apache Spark Streaming, the data freshness rate, and latency have significantly improved from 24-hour batch processing to less than one minute, facilitating faster communication to downstream systems, aiding marketing campaigns."
"Apache Spark Streaming is versatile. You can use it for competitive intelligence, gathering data from competitors, or for internal tasks like monitoring workflows."
"The solution is very stable and reliable."
 

Cons

"In terms of improvement, there should be better reporting. You can integrate with reporting solutions but Flink doesn't offer it themselves."
"Apache Flink is very powerful, but it can be challenging for beginners because it requires prior experience with similar tools and technologies, such as Kafka and batch processing."
"We have a machine learning team that works with Python, but Apache Flink does not have full support for the language."
"The state maintains checkpoints and they use RocksDB or S3. They are good but sometimes the performance is affected when you use RocksDB for checkpointing."
"One way to improve Flink would be to enhance integration between different ecosystems. For example, there could be more integration with other big data vendors and platforms similar in scope to how Apache Flink works with Cloudera. Apache Flink is a part of the same ecosystem as Cloudera, and for batch processing it's actually very useful but for real-time processing there could be more development with regards to the big data capabilities amongst the various ecosystems out there."
"The machine learning library is not very flexible."
"There are more libraries that are missing and also maybe more capabilities for machine learning."
"The technical support from Apache is not good; support needs to be improved. I would rate them from one to ten as not good."
"Monitoring is an area where they could definitely improve Apache Spark Streaming. When you have a streaming application, it generates numerous logs. After some time, the logs become meaningless because they're quite large and impossible to open."
"The problem is we need to use it in a certain manner. After that, we need to apply another pipeline for the machine learning processes, and that's what we work on."
"We would like to have the ability to do arbitrary stateful functions in Python."
"The debugging aspect could use some improvement."
"One improvement I would expect is real-time processing instead of micro-batch or near real-time."
"While it is reliable, there are some issues with Apache Spark Streaming as it is not 100% reliable."
"One improvement I would expect is real-time processing instead of micro-batch or near real-time."
"There could be an improvement in the area of the user configuration section, it should be less developer-focused and more business user-focused."
 

Pricing and Cost Advice

"Apache Flink is open source so we pay no licensing for the use of the software."
"This is an open-source platform that can be used free of charge."
"It's an open-source solution."
"The solution is open-source, which is free."
"It's an open source."
"On a scale from one to ten, where one is expensive, or not cost-effective, and ten is cheap, I rate the price a seven."
"People pay for Apache Spark Streaming as a service."
"Spark is an affordable solution, especially considering its open-source nature."
"I was using the open-source community version, which was self-hosted."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
881,665 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
20%
Retailer
12%
Computer Software Company
10%
Manufacturing Company
6%
Computer Software Company
21%
Financial Services Firm
20%
University
6%
Marketing Services Firm
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business5
Midsize Enterprise3
Large Enterprise12
By reviewers
Company SizeCount
Small Business9
Midsize Enterprise2
Large Enterprise7
 

Questions from the Community

What do you like most about Apache Flink?
The product helps us to create both simple and complex data processing tasks. Over time, it has facilitated integration and navigation across multiple data sources tailored to each client's needs. ...
What is your experience regarding pricing and costs for Apache Flink?
The solution is expensive. I rate the product’s pricing a nine out of ten, where one is cheap and ten is expensive.
What needs improvement with Apache Flink?
Apache could improve Apache Flink by providing more functionality, as they need to fully support data integration. The connectors are still very few for Apache Flink. There is a lack of functionali...
What do you like most about Apache Spark Streaming?
Apache Spark Streaming is versatile. You can use it for competitive intelligence, gathering data from competitors, or for internal tasks like monitoring workflows.
What needs improvement with Apache Spark Streaming?
One of the improvements we need is in Spark SQL and the machine learning library. I don't think there is too much to work on, but the issue is when we want to use machine learning, we always need t...
What is your primary use case for Apache Spark Streaming?
We work with Apache Spark Streaming for our project because we use that as one of the landing data sources, and we work with it to ensure we can get all of the data before it goes through our data ...
 

Also Known As

Flink
Spark Streaming
 

Overview

 

Sample Customers

LogRhythm, Inc., Inter-American Development Bank, Scientific Technologies Corporation, LotLinx, Inc., Benevity, Inc.
UC Berkeley AMPLab, Amazon, Alibaba Taobao, Kenshoo, eBay Inc.
Find out what your peers are saying about Apache Flink vs. Apache Spark Streaming and other solutions. Updated: December 2025.
881,665 professionals have used our research since 2012.