

Find out what your peers are saying about Databricks, Amazon Web Services (AWS), Knime and others in Data Science Platforms.
Everyone being able to work smoothly without unnecessary delays.
I have seen a return on investment; specifically, when we talk about efficiency, it's both time-saving and money-saving.
I have seen a return on investment with time saved by 50% and less downtime, allowing the team to deliver projects faster with fewer errors.
In a world surrounded by data, tools that allow navigation of large data volumes ensure decisions are data-driven.
Power BI is easy to deploy within an hour, providing robust security against data leaks.
Anaconda Business customer support is very active with a quick response time.
Overall, support was reliable when we needed it, just not super-fast every single time.
The customer support for Anaconda Business provides a better approach.
The significant drawback I notice is that Microsoft's size makes it hard to get specific change requests addressed unless they involve a bug.
We have a partnership with Microsoft, involving multiple weekly calls with dedicated personnel to ensure our satisfaction.
The support is good because there is also a community available.
As more environments or users get added, it still runs smoothly without major slowdowns.
Anaconda Business scales very well because it is built around centralized environment and package management.
Anaconda does not have scalability restrictions as it depends on the type of machine running it.
You expect only a small percentage of users concurrently, but beyond a thousand concurrent users, it becomes difficult to manage.
With increasing AI capabilities, architectural developments within Microsoft, and tools like Fabric, I expect Power BI to scale accordingly.
As more data is processed, performance issues may arise.
Earlier, setting up or troubleshooting conflicts could take anywhere from thirty minutes to an hour, but now most setups just work.
Anaconda Business is stable to an extent, but it sometimes crashes on systems with insufficient RAM.
In terms of stability, there's no data loss or leakage, and precautions are well-managed by Microsoft.
We typically do not have problems with end-user tools like Excel and Power BI.
It is very stable for small data, but with big data, there are performance challenges.
It would also be nice to have clearer error messages when something fails, so it is easier to understand what went wrong without digging too much.
They should enhance the security point of view; it's good, but it needs some more advanced features.
The pricing should be a little lower for a single person to use, as it might be affordable for an organization, but for my single use, it is difficult.
This makes Power BI difficult to manage as loading times can reach one or two minutes, which is problematic today.
Access was more logical in how it distinguished between data and its formatting.
Microsoft updates Power BI monthly based on user community feedback.
Anaconda is an open-source tool, so I do not pay anything for it.
My experience with pricing, setup cost, and licensing is that it is a little costly, but it is useful.
My experience with pricing, setup cost, and licensing indicates that it is a bit costly, but it is useful.
I found the setup cost to be expensive
Power BI isn't very cheap, however, it is economical compared to other solutions available.
The pricing for Microsoft Power BI is low, which is a good selling point.
Anaconda Business has positively impacted my organization because, when discussing the security point of view, it's exceptional; when comparing it to other solutions, Anaconda Business is superior.
We find the advanced security, governance, and collaborative features for organizations using Python and R particularly useful.
Anaconda Business positively impacts our organization by protecting us from compliance and security risks while keeping the environment consistent, allowing our team to focus on insight and innovation instead of worrying about setups, security, and software issues.
In today's data-driven environment, these tools are of substantial value, particularly for large enterprises with numerous processes that require extensive data analysis.
Within the organization, Microsoft Power BI is used to create dashboards and gain insights into data, enhancing data-driven decision-making.
To reduce the need for highly skilled personnel, we can engage someone who is just familiar and has a basic understanding of Microsoft Power BI, while AI can handle the major tasks through either agent AI or requirement analysis.
| Product | Market Share (%) |
|---|---|
| Anaconda Business | 2.6% |
| Databricks | 9.6% |
| KNIME Business Hub | 8.7% |
| Other | 79.1% |
| Product | Market Share (%) |
|---|---|
| Microsoft Power BI | 9.4% |
| Tableau Enterprise | 6.7% |
| Amazon QuickSight | 3.7% |
| Other | 80.2% |

| Company Size | Count |
|---|---|
| Small Business | 12 |
| Midsize Enterprise | 2 |
| Large Enterprise | 19 |
| Company Size | Count |
|---|---|
| Small Business | 135 |
| Midsize Enterprise | 57 |
| Large Enterprise | 165 |
Anaconda Business provides a comprehensive platform for data science applications, integrating extensive libraries and seamless Python and R compatibility, enhancing developer productivity.
Anaconda Business offers data science professionals a platform combining extensive library support with pre-built models and seamless integration of Python and R environments. With features like a user-friendly interface and integrated Jupyter Notebook, it facilitates real-time code execution and debugging. Environmental management is simplified via Conda, while cloud-based access and package management enhance user experience. Community support and integration with applications like RStudio and Jupyter aid in data science and deep learning tasks.
What are the key features of Anaconda Business?Anaconda Business is widely used in industries like machine learning and data analysis, where it's employed for tasks such as predictive modeling and data visualization. Organizations utilize its compatibility with tools like Scikit-learn and TensorFlow for creating statistical models, supporting applications in fields such as analytics, education, subrogation, and warehouse management.
Microsoft Power BI is a powerful tool for data analysis and visualization. This tool stands out for its ability to merge and analyze data from various sources. Widely adopted across different industries and departments, Power BI is instrumental in creating visually appealing dashboards and generating insightful business intelligence reports. Its intuitive interface, robust visualization capabilities, and seamless integration with other Microsoft applications empower users to easily create interactive reports and gain valuable insights.
We monitor all Data Science Platforms reviews to prevent fraudulent reviews and keep review quality high. We do not post reviews by company employees or direct competitors. We validate each review for authenticity via cross-reference with LinkedIn, and personal follow-up with the reviewer when necessary.