

Find out in this report how the two Cloud Data Integration solutions compare in terms of features, pricing, service and support, easy of deployment, and ROI.
I advocate using Glue in such cases.
I have seen a return on investment; my team was able to stay extremely small even though we had a lot of data integrations with many companies.
I can testify to the return on investment with metrics regarding time saved; we have increased our efficiency by about 20 to 30 percent due to the swift migration processes facilitated by the tool.
Upgrades occur every four months, and new developments coincide with version updates.
For complex Glue-related problems such as job failures or permission issues, their documentation is good, but having direct access to support helps cut down troubleshooting time significantly.
24/7 assistance is available for the Enterprise Edition.
take the time to understand our business requirements, offering appropriate recommendations.
Communication with the vendor is challenging
It is beneficial to upgrade jobs, and we conduct extensive testing in development before migrating to production.
It can easily handle data from one terabyte to 100 terabytes or more, scaling nicely with larger datasets.
It can be scaled well until you reach a point where you need to perform a lot of operations, and the issue arises when it runs out of memory to handle some data.
Pentaho Data Integration handles larger datasets better.
Pentaho Data Integration and Analytics' scalability is commendable, as it allows us to scale up according to our needs.
AWS Glue is highly stable, and I would rate its stability as nine.
Performance issues arise due to reliance on a flowchart-based mechanism instead of scripts, which can lead to longer execution times.
I find that version 3.1 is the most stable version I have ever used.
It's pretty stable, however, it struggles when dealing with smaller amounts of data.
Migrating jobs from version 3.0 to 4.0 can present compatibility issues.
With AWS, I gather data from multiple sources, clean it up, normalize it, de-duplicate it, and make it presentable.
A more user-friendly and simpler process would help speed up the deployment process.
We should also explore more effective partitioning for parallel processing and fine-tuning database connections to reduce load times and improve ETL speed.
Pentaho Data Integration and Analytics can be improved by working with different environments, specifically the possibility to change the variables, meaning I write my variables only once and can change them for different environments such as production or development.
I also lack the option to use programming languages beyond Python and SQL, and a provision to incorporate Scala code in the scripting component would be beneficial.
Costing depends on resource usage, and cost optimization may involve redesigning jobs for flexibility.
AWS charges based on runtime, which can be quite pricey.
The smallest cost for a project is around €700, while the largest can reach up to €7,000 based on the scale of the usage.
I use the community version of Pentaho Data Integration and Analytics, and I do not need additional costs.
The setup cost was minimal, and the pricing experience was pretty good.
For ETL, I feel the performance is excellent. If I create jobs in a standard way, the performance is great, and maintenance is also seamless.
AWS Glue's most valuable features include its transformation capabilities, which provide data quality and shape for processing in ML or AI models.
AWS Glue has reduced efforts by 60%, which is the main benefit.
Pentaho Data Integration and Analytics has positively impacted my organization because it meant we didn't have to write a lot of custom API back-end processing logic; it did the majority of that heavy lifting for us.
It automates the data workflow, including extraction, cleansing, and loading into warehouses for BI reporting purposes, while also removing duplicates, validating data, and standardizing formats, enabling real-time decision-making.
Pentaho Data Integration and Analytics has positively impacted my organization because it is easier to use, and my knowledge about this work facilitates the translation from the source to my final system.

| Company Size | Count |
|---|---|
| Small Business | 11 |
| Midsize Enterprise | 6 |
| Large Enterprise | 32 |
| Company Size | Count |
|---|---|
| Small Business | 18 |
| Midsize Enterprise | 18 |
| Large Enterprise | 29 |
AWS Glue is a serverless cloud data integration tool that facilitates the discovery, preparation, movement, and integration of data from multiple sources for machine learning (ML), analytics, and application development. The solution includes additional productivity and data ops tooling for running jobs, implementing business workflows, and authoring.
AWS Glue allows users to connect to more than 70 diverse data sources and manage data in a centralized data catalog. The solution facilitates visual creation, running, and monitoring of extract, transform, and load (ETL) pipelines to load data into users' data lakes. This Amazon product seamlessly integrates with other native applications of the brand and allows users to search and query cataloged data using Amazon EMR, Amazon Athena, and Amazon Redshift Spectrum.
The solution also utilizes application programming interface (API) operations to transform users' data, create runtime logs, store job logic, and create notifications for monitoring job runs. The console of AWS Glue connects all of these services into a managed application, facilitating the monitoring and operational processes. The solution also performs provisioning and management of the resources required to run users' workloads in order to minimize manual work time for organizations.
AWS Glue Features
AWS Glue groups its features into four categories - discover, prepare, integrate, and transform. Within those groups are the following features:
AWS Glue Benefits
AWS Glue offers a wide range of benefits for its users. These benefits include:
Reviews from Real Users
Mustapha A., a cloud data engineer at Jems Groupe, likes AWS Glue because it is a product that is great for serverless data transformations.
Liana I., CEO at Quark Technologies SRL, describes AWS Glue as a highly scalable, reliable, and beneficial pay-as-you-go pricing model.
Pentaho Data Integration stands as a versatile platform designed to cater to the data integration and analytics needs of organizations, regardless of their size. This powerful solution is the go-to choice for businesses seeking to seamlessly integrate data from diverse sources, including databases, files, and applications. Pentaho Data Integration facilitates the essential tasks of cleaning and transforming data, ensuring it's primed for meaningful analysis. With a wide array of tools for data mining, machine learning, and statistical analysis, Pentaho Data Integration empowers organizations to glean valuable insights from their data. What sets Pentaho Data Integration apart is its maturity and a vibrant community of users and developers, making it a reliable and cost-effective option. Pentaho Data Integration offers a range of features, including a comprehensive ETL toolkit, data cleaning and transformation capabilities, robust data analysis tools, and seamless deployment options for data integration and analytics solutions, making it a go-to solution for organizations seeking to harness the power of their data.
We monitor all Cloud Data Integration reviews to prevent fraudulent reviews and keep review quality high. We do not post reviews by company employees or direct competitors. We validate each review for authenticity via cross-reference with LinkedIn, and personal follow-up with the reviewer when necessary.