Try our new research platform with insights from 80,000+ expert users

Azure AI Search vs Elastic Search comparison

 

Comparison Buyer's Guide

Executive Summary

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Azure AI Search
Ranking in Search as a Service
4th
Average Rating
7.4
Number of Reviews
9
Ranking in other categories
No ranking in other categories
Elastic Search
Ranking in Search as a Service
1st
Average Rating
8.2
Reviews Sentiment
6.5
Number of Reviews
88
Ranking in other categories
Indexing and Search (1st), Cloud Data Integration (5th), Vector Databases (2nd)
 

Mindshare comparison

As of February 2026, in the Search as a Service category, the mindshare of Azure AI Search is 9.3%, down from 14.3% compared to the previous year. The mindshare of Elastic Search is 18.3%, up from 14.3% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Search as a Service Market Share Distribution
ProductMarket Share (%)
Elastic Search18.3%
Azure AI Search9.3%
Other72.4%
Search as a Service
 

Featured Reviews

Prabakaran SP - PeerSpot reviewer
Software Architect at a financial services firm with 1-10 employees
Automated indexing has streamlined document search workflows but semantic relevance and setup complexity still need improvement
We used the semantic search capabilities of Azure AI Search, but we haven't gotten good results in the semantic search. So we are exploring with ChromaDB, and Cosmos is having the capability of doing the semantic search as well. We are exploring that. A few queries we use analytics search, which works and is good. Analytics search is good. We are trying the ML capabilities of the product since we are using Databricks and other tools for building the models, MLflow, and related items. We are still working on proof of concepts, which could be better with ChromaDB or Cosmos or vector search or inbuilt Databricks vector stores. Language processing is not about user intention; it's about the context. If there is a document and you want to know the context of a particular section, then we would use vector search. Instead of traversing through the whole document, while chunking it into the vector, we'll categorize and chunk, and then we'll look only at those chunks to do a semantic search. When comparing Azure AI Search, I'm doing a proof of concept because with ChromaDB I can create instances using LangChain anywhere. For per session, I can create one ChromaDB and can remove it, which is really useful for proof of concepts. Instead of creating an Azure AI Search instance and doing that there, that is one advantage I'm seeing for the proof of concept alone, not for the entire product. I hope it should support all the embedding providers as well. Is there a viewer or tool similar to Storage Explorer? We are basically SQL-centric people, so we used to find Cosmos DB very quick for us when we search something and create indexes. I guess there is some limitation in Azure AI Search. I couldn't remember now, such as querying limitations. I'm not remembering that part.
Vaibhav Shukla - PeerSpot reviewer
Senior Software Engineer at Agoda
Search performance has transformed large-scale intent discovery and hybrid query handling
While Elastic Search is a good product, I see areas for improvement, particularly regarding the misconception that any amount of data can simply be dumped into Elastic Search. When creating an index, careful consideration of data massaging is essential. Elastic Search stores mappings for various data types, which must remain below a certain threshold to maintain functionality. Users need to throttle the number of fields for searching to avoid overloading the system and ensure that the design of the document is efficient for the Elastic Search index. Additionally, I suggest utilizing ILM periodically throughout the year to manage data shuffling between clusters, preventing hotspots in the distribution of requests across nodes.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Azure Search is well-documented, making it easy to understand and implement."
"Creates indexers to get data from different data sources."
"The customer engagement was good."
"Because all communication is done via the REST API, data is retrieved quickly in JSON format to reduce overhead and latency.​"
"The product is extremely configurable, allowing you to customize the search experience to suit your needs."
"The search functionality time has been reduced to a few milliseconds."
"The solution's initial setup is straightforward."
"The product is pretty resilient."
"You have dashboards, it is visual, there are maps, you can create canvases. It's more visual than anything that I've ever used."
"The special text processing features in this solution are very important for me."
"My favorite feature is the ease of use, particularly in how you integrate the agent; I've been using it since version 7, and we're on version 9 now, and I've seen the progress from using Beats to using the agent, making it so simple today to enroll a server with the Elastic Agent."
"I find the solution to be fast."
"I appreciate that Elastic Enterprise Search is easy to use and that we have people on our team who are able to manage it effectively."
"X-Pack provides good features, like authorization and alerts."
"It's a stable solution and we have not had any issues."
"The flexibility and the support for diverse languages that it provides for searching the database are most valuable. We can use different languages to query the database."
 

Cons

"The after-hour services are slow."
"The initial setup is not as easy as it should be."
"The solution's stability could be better."
"They should add an API for third-party vendors, like a security operating center or reporting system, that would be a big improvement."
"It would be good if the site found a better way to filter things based on subscription."
"For availability, expanding its use to all Azure datacenters would be helpful in increasing awareness and usage of the product.​"
"Adding items to Azure Search using its .NET APIs sometimes throws exceptions."
"For SDKs, Azure Search currently offers solutions for .NET and Python. Additional platforms would be welcomed, especially native iOS and Android solutions for mobile development."
"Elastic Search should provide better guides for developers."
"It needs email notification, similar to what Logentries has. Because of the notification issue, we moved to Logentries, as it provides a simple way to receive notification whenever a server encounters an error or unexpected conditions (which we have defined using RegEx​)."
"The GUI is the part of the program which has the most room for improvement."
"There is another solution I'm testing which has a 500 record limit when you do a search on Elastic Enterprise Search. That's the only area in which I'm not sure whether it's a limitation on our end in terms of knowledge or a technical limitation from Elastic Enterprise Search. There is another solution we are looking at that rides on Elastic Enterprise Search. And the limit is for any sort of records that you're doing or data analysis you're trying to do, you can only extract 500 records at a time. I know the open-source nature has a lot of limitations, Otherwise, Elastic Enterprise Search is a fantastic solution and I'd recommend it to anyone."
"More AI would be beneficial. I would also appreciate more simplicity in dashboards."
"The upgrade experience and inflexibility with fields keeps Elastic Search from being a perfect 10."
"Its licensing needs to be improved. They don't offer a perpetual license. They want to know how many nodes you will be using, and they ask for an annual subscription. Otherwise, they don't give you permission to use it. Our customers are generally military or police departments or customers without connection to the internet. Therefore, this model is not suitable for us. This subscription-based model is not the best for OEM vendors. Another annoying thing about Elasticsearch is its roadmap. We are developing something, and then they say, "Okay. We have removed that feature in this release," and when we are adapting to that release, they say, "Okay. We have removed that one as well." We don't know what they will remove in the next version. They are not looking for backward compatibility from the customers' perspective. They just remove a feature and say, "Okay. We've removed this one." In terms of new features, it should have an ODBC driver so that you can search and integrate this product with existing BI tools and reporting tools. Currently, you need to go for third parties, such as CData, in order to achieve this. ODBC driver is the most important feature required. Its Community Edition does not have security features. For example, you cannot authenticate with a username and password. It should have security features. They might have put it in the latest release."
"The setup is somewhat complicated due to multiple dependencies and relations with different systems."
 

Pricing and Cost Advice

"​When telling people about the product, I always encourage them to set up a new service using the free pricing tier. This allows them to learn about the product and its capabilities in a risk-free environment. Depending on their needs, the free tier may be suitable for their projects, however enterprise applications will most likely required a higher, paid tier."
"The cost is comparable."
"The solution is affordable."
"For the actual costs, I encourage users to view the pricing page on the Azure site for details.​"
"I would rate the pricing an eight out of ten, where one is the low price, and ten is the high price."
"I think the solution's pricing is ok compared to other cloud devices."
"The premium license is expensive."
"The tool is not expensive. Its licensing costs are yearly."
"The tool is an open-source product."
"​The pricing and license model are clear: node-based model."
"To access all the features available you require both the open source license and the production license."
"We use the free version for some logs, but not extensive use."
"ELK has been considered as an alternative to Splunk to reduce licensing costs."
"The solution is affordable."
report
Use our free recommendation engine to learn which Search as a Service solutions are best for your needs.
881,733 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
19%
Financial Services Firm
12%
Retailer
8%
Manufacturing Company
8%
Financial Services Firm
12%
Computer Software Company
12%
Manufacturing Company
9%
Retailer
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business3
Midsize Enterprise2
Large Enterprise4
By reviewers
Company SizeCount
Small Business37
Midsize Enterprise10
Large Enterprise43
 

Questions from the Community

What needs improvement with Azure Search?
We used the semantic search capabilities of Azure AI Search, but we haven't gotten good results in the semantic search. So we are exploring with ChromaDB, and Cosmos is having the capability of doi...
What is your primary use case for Azure Search?
Our use case for Azure AI Search is that we earlier thought to build a vector search and used to have the vector search query in Azure AI Search. Earlier, when it was a search service, we used to l...
What advice do you have for others considering Azure Search?
I can answer a few questions about Azure AI Search to share my opinion. I am still working with Azure and using Azure solutions. We haven't used Cognitive Skills in Azure AI Search. We also got a d...
What do you like most about ELK Elasticsearch?
Logsign provides us with the capability to execute multiple queries according to our requirements. The indexing is very high, making it effective for storing and retrieving logs. The real-time anal...
What is your experience regarding pricing and costs for ELK Elasticsearch?
On the subject of pricing, Elastic Search is very cost-efficient. You can host it on-premises, which would incur zero cost, or take it as a SaaS-based service, where the expenses remain minimal.
What needs improvement with ELK Elasticsearch?
While Elastic Search is a good product, I see areas for improvement, particularly regarding the misconception that any amount of data can simply be dumped into Elastic Search. When creating an inde...
 

Comparisons

 

Also Known As

No data available
Elastic Enterprise Search, Swiftype, Elastic Cloud
 

Overview

 

Sample Customers

XOMNI, Real Madrid C.F., Weichert Realtors, JLL, NAV CANADA, Medihoo, autoTrader Corporation, Gjirafa
T-Mobile, Adobe, Booking.com, BMW, Telegraph Media Group, Cisco, Karbon, Deezer, NORBr, Labelbox, Fingerprint, Relativity, NHS Hospital, Met Office, Proximus, Go1, Mentat, Bluestone Analytics, Humanz, Hutch, Auchan, Sitecore, Linklaters, Socren, Infotrack, Pfizer, Engadget, Airbus, Grab, Vimeo, Ticketmaster, Asana, Twilio, Blizzard, Comcast, RWE and many others.
Find out what your peers are saying about Azure AI Search vs. Elastic Search and other solutions. Updated: February 2026.
881,733 professionals have used our research since 2012.