Try our new research platform with insights from 80,000+ expert users

Cloudera DataFlow vs Databricks comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 17, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Cloudera DataFlow
Ranking in Streaming Analytics
14th
Average Rating
7.4
Reviews Sentiment
6.5
Number of Reviews
5
Ranking in other categories
No ranking in other categories
Databricks
Ranking in Streaming Analytics
1st
Average Rating
8.2
Reviews Sentiment
7.0
Number of Reviews
88
Ranking in other categories
Cloud Data Warehouse (7th), Data Science Platforms (1st)
 

Mindshare comparison

As of April 2025, in the Streaming Analytics category, the mindshare of Cloudera DataFlow is 0.9%, down from 1.5% compared to the previous year. The mindshare of Databricks is 14.6%, up from 10.1% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics
 

Featured Reviews

Mohamed-Saied - PeerSpot reviewer
Efficient data integration and workflow scheduling elevate project performance
Cloudera DataFlow is used as an ETL or ELT solution within Cloudera's data pipeline. Our organization heavily relies on it for data ingestion, transformation, and warehousing. It is also used daily for operational tasks, and it integrates well within Cloudera's ecosystem for high performance and…
ShubhamSharma7 - PeerSpot reviewer
Capability to integrate diverse coding languages in a single notebook greatly enhances workflow
Databricks offers various courses that I can use, whether it's PySpark, Scala, or R. I can leverage all these courses in a single notebook, which is beneficial for clients as they can access various tools in one place whenever needed. This is quite significant. I usually work with PySpark based on client requirements. After coding, I feed the Databricks notebooks into the ADF pipeline for updates. Databricks' capability to process data in parallel enhances data processing speed. Furthermore, I can connect our Databricks notebook directly with Power BI and other visualization tools like Qlik. Once we develop code, it allows us to transform raw data into visualizations for clients using analysis diagrams, which is very helpful.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The most effective features are data management and analytics."
"DataFlow's performance is okay."
"The initial setup was not so difficult"
"Cloudera DataFlow is fully compatible with Cloudera's ecosystem and offers high efficiency through native connectors for various ecosystems."
"This solution is very scalable and robust."
"The most valuable features of the solution are the hardware and the resources it quickly provides without much hassle."
"I like the ability to use workspaces with other colleagues because you can work together even without seeing the other team's job."
"Databricks is hosted on the cloud. It is very easy to collaborate with other team members who are working on it. It is production-ready code, and scheduling the jobs is easy."
"The solution is very simple and stable."
"Databricks' most valuable features are the workspace and notebooks. Its integration, interface, and documentation are also good."
"Databricks provides a consistent interface for data engineers to work with data in a consistent language on a single integrated platform for ingesting, processing, and serving data to the end user."
"Ability to work collaboratively without having to worry about the infrastructure."
"It offers AI functionalities that assist with code management and machine learning processes."
 

Cons

"It is not easy to use the R language. Though I don't know if it's possible, I believe it is possible, but it is not the best language for machine learning."
"Cloudera DataFlow's UI interface could be enhanced significantly. Memory handling can also be improved to be better than it is today."
"It's an outdated legacy product that doesn't meet the needs of modern data analysts and scientists."
"Although their workflow is pretty neat, it still requires a lot of transformation coding; especially when it comes to Python and other demanding programming languages."
"The interface of Databricks could be easier to use when compared to other solutions. It is not easy for non-data scientists. The user interface is important before we had to write code manually and as solutions move to "No code AI" it is critical that the interface is very good."
"Databricks could improve in some of its functionality."
"The Databricks cluster can be improved."
"There would also be benefits if more options were available for workers, or the clusters of the two points."
"The solution could be improved by integrating it with data packets. Right now, the load tables provide a function, like team collaboration. Still, it's unclear as to if there's a function to create different branches and/or more branches. Our team had used data packets before, however, I feel it's difficult to integrate the current with the previous data packets."
"There has been a significant evolution in databases. One area of improvement is the Databricks File System (DBFS), where command-line challenges arise when accessing files."
"It would be great if Databricks could integrate all the cloud platforms."
"We'd like a more visual dashboard for analysis It needs better UI."
 

Pricing and Cost Advice

"DataFlow isn't expensive, but its value for money isn't great."
"Databricks' cost could be improved."
"We have only incurred the cost of our AWS cloud services. This is because during this period, Databricks provided us with an extended evaluation period, and we have not spent much money yet. We are just starting to incur costs this month, I will know more later on the full cost perspective."
"Databricks are not costly when compared with other solutions' prices."
"My smallest project is around a hundred euros, and my most expensive is just under a thousand euros a week. That is based on terabytes of data processed each month."
"The price is okay. It's competitive."
"We're charged on what the data throughput is and also what the compute time is."
"Licensing on site I would counsel against, as on-site hardware issues tend to really delay and slow down delivery."
"The cost is around $600,000 for 50 users."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
845,040 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
University
18%
Computer Software Company
16%
Financial Services Firm
14%
Media Company
7%
Financial Services Firm
17%
Computer Software Company
11%
Manufacturing Company
9%
Healthcare Company
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

What do you like most about Cloudera DataFlow?
The most effective features are data management and analytics.
What needs improvement with Cloudera DataFlow?
Cloudera DataFlow's UI interface could be enhanced significantly. Memory handling can also be improved to be better than it is today.
What is your primary use case for Cloudera DataFlow?
Cloudera DataFlow is used as an ETL or ELT solution within Cloudera's data pipeline. Our organization heavily relies on it for data ingestion, transformation, and warehousing. It is also used daily...
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
Which would you choose - Databricks or Azure Stream Analytics?
Databricks is an easy-to-set-up and versatile tool for data management, analysis, and business analytics. For analytics teams that have to interpret data to further the business goals of their orga...
 

Comparisons

 

Also Known As

CDF, Hortonworks DataFlow, HDF
Databricks Unified Analytics, Databricks Unified Analytics Platform, Redash
 

Overview

 

Sample Customers

Clearsense
Elsevier, MyFitnessPal, Sharethrough, Automatic Labs, Celtra, Radius Intelligence, Yesware
Find out what your peers are saying about Cloudera DataFlow vs. Databricks and other solutions. Updated: March 2025.
845,040 professionals have used our research since 2012.