Try our new research platform with insights from 80,000+ expert users

Cloudera DataFlow vs Databricks comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 17, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Cloudera DataFlow
Ranking in Streaming Analytics
15th
Average Rating
7.4
Reviews Sentiment
6.5
Number of Reviews
5
Ranking in other categories
No ranking in other categories
Databricks
Ranking in Streaming Analytics
1st
Average Rating
8.2
Reviews Sentiment
7.0
Number of Reviews
91
Ranking in other categories
Cloud Data Warehouse (8th), Data Science Platforms (1st)
 

Mindshare comparison

As of July 2025, in the Streaming Analytics category, the mindshare of Cloudera DataFlow is 1.2%, down from 1.4% compared to the previous year. The mindshare of Databricks is 14.2%, up from 11.3% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics
 

Featured Reviews

Mohamed-Saied - PeerSpot reviewer
Efficient data integration and workflow scheduling elevate project performance
Cloudera DataFlow is used as an ETL or ELT solution within Cloudera's data pipeline. Our organization heavily relies on it for data ingestion, transformation, and warehousing. It is also used daily for operational tasks, and it integrates well within Cloudera's ecosystem for high performance and…
ShubhamSharma7 - PeerSpot reviewer
Capability to integrate diverse coding languages in a single notebook greatly enhances workflow
Databricks offers various courses that I can use, whether it's PySpark, Scala, or R. I can leverage all these courses in a single notebook, which is beneficial for clients as they can access various tools in one place whenever needed. This is quite significant. I usually work with PySpark based on client requirements. After coding, I feed the Databricks notebooks into the ADF pipeline for updates. Databricks' capability to process data in parallel enhances data processing speed. Furthermore, I can connect our Databricks notebook directly with Power BI and other visualization tools like Qlik. Once we develop code, it allows us to transform raw data into visualizations for clients using analysis diagrams, which is very helpful.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"DataFlow's performance is okay."
"The most effective features are data management and analytics."
"The initial setup was not so difficult"
"Cloudera DataFlow is fully compatible with Cloudera's ecosystem and offers high efficiency through native connectors for various ecosystems."
"This solution is very scalable and robust."
"Databricks offers various courses that I can use, whether it's PySpark, Scala, or R."
"The technical support is good."
"The initial setup phase of Databricks was good."
"Databricks serves as a single platform that can handle numerous end-to-end machine learning tasks."
"One of the features provides nice interactive clusters, or compute instances that you don't really need to manage often."
"I think Databricks is very good at facilitating AI and machine learning projects; they implement AI and machine learning models very well, and clients can run their models on Databricks."
"It is fast, it's scalable, and it does the job it needs to do."
"It's very simple to use Databricks Apache Spark."
 

Cons

"It is not easy to use the R language. Though I don't know if it's possible, I believe it is possible, but it is not the best language for machine learning."
"Although their workflow is pretty neat, it still requires a lot of transformation coding; especially when it comes to Python and other demanding programming languages."
"It's an outdated legacy product that doesn't meet the needs of modern data analysts and scientists."
"Cloudera DataFlow's UI interface could be enhanced significantly. Memory handling can also be improved to be better than it is today."
"Databricks is not geared towards the end-user, but rather it is for data engineers or data scientists."
"As a data engineer, I see cluster failure in our Databricks user databases as a major issue."
"I would like more integration with SQL for using data in different workspaces."
"I think setting up the whole account for one person and giving access are areas that can be difficult to manage and should be made a little easier."
"I would like to see more documentation in terms of how an end-user could use it, and users like me can easily try it and implement use cases."
"Databricks' performance when serving the data to an analytics tool isn't as good as Snowflake's."
"There is room for improvement in visualization."
"It would be better if it were faster. It can be slow, and it can be super fast for big data. But for small data, sometimes there is a sub-second response, which can be considered slow. In the next release, I would like to have automatic creation of APIs because they don't have it at the moment, and I spend a lot of time building them."
 

Pricing and Cost Advice

"DataFlow isn't expensive, but its value for money isn't great."
"We implement this solution on behalf of our customers who have their own Azure subscription and they pay for Databricks themselves. The pricing is more expensive if you have large volumes of data."
"I rate the price of Databricks as eight out of ten."
"The solution is a good value for batch processing and huge workloads."
"We have only incurred the cost of our AWS cloud services. This is because during this period, Databricks provided us with an extended evaluation period, and we have not spent much money yet. We are just starting to incur costs this month, I will know more later on the full cost perspective."
"Databricks' cost could be improved."
"The licensing costs of Databricks is a tiered licensing regime, so it is flexible."
"Databricks are not costly when compared with other solutions' prices."
"Licensing on site I would counsel against, as on-site hardware issues tend to really delay and slow down delivery."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
860,592 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
University
16%
Financial Services Firm
15%
Computer Software Company
13%
Retailer
7%
Financial Services Firm
18%
Computer Software Company
10%
Manufacturing Company
9%
Healthcare Company
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

What do you like most about Cloudera DataFlow?
The most effective features are data management and analytics.
What needs improvement with Cloudera DataFlow?
Cloudera DataFlow's UI interface could be enhanced significantly. Memory handling can also be improved to be better than it is today.
What is your primary use case for Cloudera DataFlow?
Cloudera DataFlow is used as an ETL or ELT solution within Cloudera's data pipeline. Our organization heavily relies on it for data ingestion, transformation, and warehousing. It is also used daily...
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
Which would you choose - Databricks or Azure Stream Analytics?
Databricks is an easy-to-set-up and versatile tool for data management, analysis, and business analytics. For analytics teams that have to interpret data to further the business goals of their orga...
 

Comparisons

 

Also Known As

CDF, Hortonworks DataFlow, HDF
Databricks Unified Analytics, Databricks Unified Analytics Platform, Redash
 

Overview

 

Sample Customers

Clearsense
Elsevier, MyFitnessPal, Sharethrough, Automatic Labs, Celtra, Radius Intelligence, Yesware
Find out what your peers are saying about Cloudera DataFlow vs. Databricks and other solutions. Updated: June 2025.
860,592 professionals have used our research since 2012.