Try our new research platform with insights from 80,000+ expert users

Databricks vs Upsolver comparison

 

Comparison Buyer's Guide

Executive Summary

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Databricks
Ranking in Streaming Analytics
1st
Average Rating
8.2
Reviews Sentiment
7.0
Number of Reviews
93
Ranking in other categories
Cloud Data Warehouse (9th), Data Science Platforms (1st), Data Management Platforms (DMP) (5th)
Upsolver
Ranking in Streaming Analytics
20th
Average Rating
8.4
Reviews Sentiment
7.4
Number of Reviews
3
Ranking in other categories
Data Integration (38th)
 

Mindshare comparison

As of February 2026, in the Streaming Analytics category, the mindshare of Databricks is 9.5%, down from 14.1% compared to the previous year. The mindshare of Upsolver is 0.9%, up from 0.2% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics Market Share Distribution
ProductMarket Share (%)
Databricks9.5%
Upsolver0.9%
Other89.6%
Streaming Analytics
 

Featured Reviews

Satyam Wagh - PeerSpot reviewer
Consultant at Nice Software Solutions
Unified data workflows have cut ticket processing times and are driving faster business insights
Databricks already provides monthly updates and continuously works on delivering new features while enhancing existing ones. However, the platform could become easier to use. While instruction-led workshops are available, offering more free instructional workshops would allow a wider audience to access and learn about Databricks. Additionally, providing use cases would help beginners gain more knowledge and hands-on experience. Regarding my experience, I was initially unfamiliar with the platform and had to conduct research and learn through various videos. I did find some instruction-led classes, but several of those required payment. The platform should provide more free resources to enable a broader audience to access and learn about Databricks. The platform itself is user-friendly and easy to use without complex issues, so I believe it does not need improvement in its core functionality. Rather, supporting aspects can be enhanced.
reviewer2784462 - PeerSpot reviewer
Software Engineer at a tech vendor with 10,001+ employees
Streaming pipelines have become simpler and onboarding new data sources is now much faster
One of the best features Upsolver offers is the automatic schema evolution. Another good feature is SQL-based streaming transformations. Complex streaming transformations such as cleansing, deduplication, and enrichment were implemented using SQL and drastically reduced the need for custom Spark code. My experience with the SQL-based streaming transformations in Upsolver is that it had a significant positive impact on the overall data engineering workflow. By replacing custom Spark streaming jobs with declarative SQL logic, I simplified development, review, and deployment processes. Data transformations such as parsing, filtering, enrichment, and deduplication could be implemented and modified quickly without rebuilding or redeploying complex code-based pipelines. Upsolver has impacted my organization positively because it brings many benefits. The first one is faster onboarding of new data sources. Another one is more reliable streaming pipelines. Another one is near-real-time data availability, which is very important for us. It also reduced operational effort for data engineering teams. A specific outcome that highlights these benefits is that the time to onboard new sources is reduced from weeks to days. Custom Spark code reduction reached 50 to 40 percent. Pipeline failures are reduced by 70 to 80 percent. Data latency is improved from hours to minutes.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Databricks has a scalable Spark cluster creation process. The creators of Databricks are also the creators of Spark, and they are the industry leaders in terms of performance."
"Databricks is a truly essential platform for data engineering needs, and I recommend it to anyone looking to advance in the data engineering field."
"The most valuable feature of Databricks is the integration with Microsoft Azure."
"Databricks gives you the flexibility of using several programming languages independently or in combination to build models."
"When we have a huge volume of data that we want to process with speed, velocity, and volume, we go through Databricks."
"The solution is very easy to use."
"Databricks has a Unified Catalog that assists with secured access and governance."
"Databricks' Lakehouse architecture has been most useful for us. The data governance has been absolutely efficient in between other kinds of solutions."
"Customer service is excellent, and I would rate it between eight point five to nine out of ten."
"A specific outcome that highlights these benefits is that the time to onboard new sources is reduced from weeks to days, custom Spark code reduction reached 50 to 40 percent, pipeline failures are reduced by 70 to 80 percent, and data latency is improved from hours to minutes."
"It was easy to use and set up, with a nearly no-code interface that relied mostly on drag-and-drop functionality."
"The most prominent feature of Upsolver is its function as an ETL tool, allowing data to be moved across platforms and different data technologies."
 

Cons

"There could be more support for automated machine learning in the database. I would like to see more ways to do analysis so that the reporting is more understandable."
"The integration features could be more interesting, more involved."
"I have had some issues with some of the Spark clusters running on Databricks, where the Spark runtime and clusters go up and down, which is an area for improvement."
"Performance could be improved."
"The product could be improved regarding the delay when switching to higher-performing virtual machines compared to other platforms."
"The solution could be improved by adding a feature that would make it more user-friendly for our team. The feature is simple, but it would be useful. Currently, our team is more familiar with the language R, but Databricks requires the use of Jupyter Notebooks which primarily supports Python. We have tried using RStudio, but it is not a fully integrated solution. To fully utilize Databricks, we have to use the Jupyter interface. One feature that would make it easier for our team to adopt the Jupyter interface would be the ability to select a specific variable or line of code and execute it within a cell. This feature is available in other Jupyter Notebooks outside of Databricks and in our own IDE, but it is not currently available within Databricks. If this feature were added, it would make the transition to using Databricks much smoother for our team."
"Doesn't provide a lot of credits or trial options."
"I would love an integration in my desktop IDE. For now, I have to code on their webpage."
"Upsolver excels in ETL and data aggregation, while ThoughtSpot is strong in natural language processing for querying datasets. Combining these tools can be very effective: Upsolver handles aggregation and ETL, and ThoughtSpot allows for natural language queries. There’s potential for highlighting these integrations in the future."
"I think that Upsolver can be improved in orchestration because it is not a full orchestration tool."
"On the stability side, I would rate it seven out of ten. Using multiple cloud providers and data engineering technologies creates complexity, and managing different plugins is not always easy, but they are working on it."
"There is room for improvement in query tuning."
 

Pricing and Cost Advice

"The solution is affordable."
"We're charged on what the data throughput is and also what the compute time is."
"We have only incurred the cost of our AWS cloud services. This is because during this period, Databricks provided us with an extended evaluation period, and we have not spent much money yet. We are just starting to incur costs this month, I will know more later on the full cost perspective."
"I do not exactly know the costs, but one of our clients pays between $100 USD and $200 USD monthly."
"We find Databricks to be very expensive, although this improved when we found out how to shut it down at night."
"Databricks is a very expensive solution. Pricing is an area that could definitely be improved. They could provide a lower end compute and probably reduce the price."
"I'm not involved in the financing, but I can say that the solution seemed reasonably priced compared to the competitors. Similar products are usually in the same price range. With five being affordable and one being expensive, I would rate Databricks a four out of five."
"I would rate Databricks' pricing seven out of ten."
"Upsolver is affordable at approximately $225 per terabyte per year."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
881,665 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
18%
Manufacturing Company
9%
Computer Software Company
8%
Healthcare Company
6%
No data available
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business26
Midsize Enterprise12
Large Enterprise56
No data available
 

Questions from the Community

Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
Which would you choose - Databricks or Azure Stream Analytics?
Databricks is an easy-to-set-up and versatile tool for data management, analysis, and business analytics. For analytics teams that have to interpret data to further the business goals of their orga...
What is your experience regarding pricing and costs for Upsolver?
My experience with pricing, setup cost, and licensing was a very good experience, but it is not a direct experience because it was not my responsibility. It was in charge of the customer. However, ...
What needs improvement with Upsolver?
I think that Upsolver can be improved in orchestration because it is not a full orchestration tool. I believe it could be better in this regard. The cost needs attention at a very large scale. I th...
What is your primary use case for Upsolver?
My main use case for Upsolver is during an IT consulting project for a large enterprise running a cloud-native data platform on AWS. I used Upsolver to ingest and process high-volume stream data fr...
 

Comparisons

 

Also Known As

Databricks Unified Analytics, Databricks Unified Analytics Platform, Redash
No data available
 

Overview

 

Sample Customers

Elsevier, MyFitnessPal, Sharethrough, Automatic Labs, Celtra, Radius Intelligence, Yesware
Information Not Available
Find out what your peers are saying about Databricks vs. Upsolver and other solutions. Updated: December 2025.
881,665 professionals have used our research since 2012.