Try our new research platform with insights from 80,000+ expert users

Dataiku vs IBM SPSS Modeler comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Dataiku
Ranking in Data Science Platforms
6th
Average Rating
8.2
Reviews Sentiment
7.1
Number of Reviews
12
Ranking in other categories
No ranking in other categories
IBM SPSS Modeler
Ranking in Data Science Platforms
13th
Average Rating
8.0
Reviews Sentiment
6.6
Number of Reviews
39
Ranking in other categories
Data Mining (4th)
 

Mindshare comparison

As of May 2025, in the Data Science Platforms category, the mindshare of Dataiku is 12.8%, up from 8.4% compared to the previous year. The mindshare of IBM SPSS Modeler is 2.4%, down from 2.7% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

RichardXu - PeerSpot reviewer
The platform organizes workflows visually and efficiently
One of the valuable features of Dataiku is the workflow capability. It allows us to organize a workflow efficiently. The platform has a visual interface, making it much easier for educated professionals to organize their work. This feature is useful because it simplifies tasks and eliminates the need for a data scientist. If you are knowledgeable about AI, you can directly write using primitive tools like Pantera flow, PyTorch, and Scikit-learn. However, Dataiku makes this process much easier.
PeterHuo - PeerSpot reviewer
Good tool for extracting data from data warehouses, creating streams, and manipulating logic to extract final data
There are performance issues. Extracting data from many combined tables can take hours and occasionally crash the server due to memory leaks. This performance problem bothers people. The performance issue seems to be related to the server. We design streams on the client and submit them to the server, which generates a large SQL statement. There are two potential bottlenecks: one in the server and another in data extraction. I'm unsure about the exact mechanics of data splitting when fetching from the database. When streams become larger, performance bottlenecks may occur in the IBM SPSS Modeler server or the database. Sometimes the server crashes and needs to be restarted to release memory on both sides. I'm not sure exactly where the problem is caused, as I focus on stream design rather than server issues. The problem could be on the IBM SPSS Modeler server and database.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"If many teams are collaborating and sharing Jupyter notebooks, it's very useful."
"Our clients can easily drag and drop components and use them on the spot."
"The solution is quite stable."
"The most valuable feature of this solution is that it is one tool that can do everything, and you have the ability to very easily push your design to prediction."
"Traceability is vital since I manage many cohorts, and collaboration is key as I have multiple engineers substituting for one another."
"I like the interface, which is probably my favorite part of the solution. It is really user-friendly for an IT person."
"The advantage is that you can focus on machine learning while having access to what they call 'recipes.' These recipes allow me to preprocess and prepare data without writing any code."
"Data Science Studio's data science model is very useful."
"Extremely easy to use, it offers a generous selection of proprietary machine learning algorithms."
"I think it is the point and drag features that are the most valuable. You can simply click at the windows, and then pull up the functions."
"The visual modeling capability is one of its attractive features."
"Our business units' capabilities with SPSS Modeler is high. They no longer waste time on modeling and algorithms, meaning they are not coding any more. For example, segmentation projects now take one to three months, rather than six months to a year, as before."
"A lot of jobs that are stuck in Excel due to the huge numbers of rows are tackled pretty quickly."
"We use analytics with the visual modeling capability to leverage productivity improvements."
"We have full control of the data handling process."
"It gives you a GUI interface, which is a lot more user-friendly and easier to use compared to writing R scripts or Python."
 

Cons

"I find that it is a little slow during use. It takes more time than I would expect for operations to complete."
"I think it would help if Data Science Studio added some more features and improved the data model."
"One area for improvement is the need for more capabilities similar to those provided by NVIDIA for parallel machine learning training. We still encounter some integration issues."
"There were stability issues: 1) SQL operations, such as partitioning, had bugs and showed wrong results. 2) Due to server downtime, scheduled processes used to fail. 3) Access to project folders was compromised (privacy issue) with wrong people getting access to confidential project folders."
"Although known for Big Data, the processing time to process 1.8 billion records was terribly slow (five days)."
"Server up-time needs to be improved. Also, query engines like Spark and Hive need to be more stable."
"The interface for the web app can be a bit difficult. It needs to have better capabilities, at least for developers who like to code. This is due to the fact that everything is enabled in a single window with different tabs. For them to actually develop and do the concurrent testing that needs to be done, it takes a bit of time. That is one improvement that I would like to see - from a web app developer perspective."
"In the next release of this solution, I would like to see deep learning better integrated into the tool and not simply an extension or plugin."
"Requires more development."
"When you are not using the product, such as during the pandemic where we had worldwide lockdowns, you still have to pay for the licensing."
"I would like see more programming languages added, like MATLAB. That would be better."
"Formula writing is not straightforward for an Excel user. Totally new set of functions, which takes time to learn and teach."
"Customer support is hard to contact."
"Expensive to deploy solutions. You need to buy an extra deployment unit."
"​Initial setup of the software was complex, because of our own problems within the government."
"It would be beneficial if the tool would include more well-known machine learning algorithms."
 

Pricing and Cost Advice

"The annual licensing fees are approximately €20 ($22 USD) per key for the basic version and €40 ($44 USD) per key for the version with everything."
"Pricing is pretty steep. Dataiku is also not that cheap."
"This tool, being an IBM product, is pretty expensive."
"Its price is okay for a company, but for personal use, it is considered somewhat expensive."
"It got us a good amount of money with quick and efficient modeling."
"I am using the free version of IBM SPSS Modeler, it is the educational edition version."
"Having in mind all four tools from Garner’s top quadrant, the pricing of this tool is competitive and it reflects the quality that it offers."
"The scalability was kind of limited by our ability to get other people licenses, and that was usually more of a financial constraint. It's expensive, but it's a good tool."
"It is a huge increase to time savings."
"$5,000 annually."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
851,604 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
18%
Educational Organization
10%
Computer Software Company
9%
Manufacturing Company
9%
Financial Services Firm
13%
Educational Organization
11%
University
9%
Computer Software Company
8%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What is your experience regarding pricing and costs for Dataiku Data Science Studio?
I find the pricing of Dataiku quite affordable for our customers, as they are usually large companies. However, it is a pricey solution and I primarily recommend it to bigger companies.
What needs improvement with Dataiku Data Science Studio?
There is room for improvement in terms of allowing for more code-based features. I would love for Dataiku to allow more flexibility with code-based components and provide the possibility to extend ...
What is your primary use case for Dataiku Data Science Studio?
My company sells licenses for both Dataiku and Alteryx, and we have clients who use them. I engage with several companies in telecommunications, retail, and energy to assess how our clients are uti...
What do you like most about IBM SPSS Modeler?
Compared to other tools, the product works much easier to analyze data without coding.
What is your experience regarding pricing and costs for IBM SPSS Modeler?
The government has funds and a budget, it's hard to say if it's expensive or cheap. In Canada, they have a yearly budget. They used to encourage people to use the modeler for development. If ten us...
What needs improvement with IBM SPSS Modeler?
There are performance issues. Extracting data from many combined tables can take hours and occasionally crash the server due to memory leaks. This performance problem bothers people. The performanc...
 

Comparisons

 

Also Known As

Dataiku DSS
SPSS Modeler
 

Overview

 

Sample Customers

BGL BNP Paribas, Dentsu Aegis, Link Mobility Group, AramisAuto
Reisebªro Idealtours GmbH, MedeAnalytics, Afni, Israel Electric Corporation, Nedbank Ltd., DigitalGlobe, Vodafone Hungary, Aegon Hungary, Bureau Veritas, Brammer Group, Florida Department of Juvenile Justice, InSites Consulting, Fortis Turkey
Find out what your peers are saying about Dataiku vs. IBM SPSS Modeler and other solutions. Updated: April 2025.
851,604 professionals have used our research since 2012.