Try our new research platform with insights from 80,000+ expert users

Elastic Search vs Pinecone comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Mar 5, 2025

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Elastic Search
Ranking in Vector Databases
2nd
Average Rating
8.2
Reviews Sentiment
6.5
Number of Reviews
88
Ranking in other categories
Indexing and Search (1st), Cloud Data Integration (5th), Search as a Service (1st)
Pinecone
Ranking in Vector Databases
5th
Average Rating
8.4
Reviews Sentiment
6.5
Number of Reviews
9
Ranking in other categories
AI Data Analysis (15th), AI Content Creation (4th)
 

Mindshare comparison

As of February 2026, in the Vector Databases category, the mindshare of Elastic Search is 3.9%, down from 6.4% compared to the previous year. The mindshare of Pinecone is 7.1%, down from 8.1% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Vector Databases Market Share Distribution
ProductMarket Share (%)
Elastic Search3.9%
Pinecone7.1%
Other89.0%
Vector Databases
 

Featured Reviews

Vaibhav Shukla - PeerSpot reviewer
Senior Software Engineer at Agoda
Search performance has transformed large-scale intent discovery and hybrid query handling
While Elastic Search is a good product, I see areas for improvement, particularly regarding the misconception that any amount of data can simply be dumped into Elastic Search. When creating an index, careful consideration of data massaging is essential. Elastic Search stores mappings for various data types, which must remain below a certain threshold to maintain functionality. Users need to throttle the number of fields for searching to avoid overloading the system and ensure that the design of the document is efficient for the Elastic Search index. Additionally, I suggest utilizing ILM periodically throughout the year to manage data shuffling between clusters, preventing hotspots in the distribution of requests across nodes.
Pradeep Gudipati - PeerSpot reviewer
Chief Technology Advisor at Kovaad technologies Pvt Ltd
Faced challenges with metadata filtering but have achieved reliable long-term memory for chat applications
We were looking at multiple options for a vector database, and we found Pinecone to be the easiest to integrate into our solution. Plus, it has a very generous free tier, which helps us as a startup. The best features Pinecone offers are quick setup and good indexing for us. The retrieval mechanisms are fast, and the integration with Python as with JavaScript and TypeScript libraries that Pinecone provides are very robust. Authentication is also very good. The namespaces feature allows us to break down or store data for each user separately, reducing interference and maintaining privacy as an important feature. Pinecone has positively impacted our organization by enhancing efficiency for the team, and the long-term effect has been that the chats have become much more personalized due to the memory added through a vector database. We are seeing that the trainees getting trained on the platform are more satisfied with the results or messages generated by AI.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The observability is the best available because it provides granular insights that identify reasons for defects."
"Gives us a more user-friendly, centralized solution (for those who just needed a quick glance, without being masters of sed and awk) as well as the ability to implement various mechanisms for machine-learning from our logs, and sending alerts for anomalies."
"The solution is very good with no issues or glitches."
"The UI is very nice, and performance wise it's quite good too."
"It's a stable solution and we have not had any issues."
"The most valuable feature of the solution is its utility and usefulness."
"The initial setup is fairly simple."
"The search speed is most valuable and important."
"The product's setup phase was easy."
"Pinecone has positively impacted my organization by helping people in needle-in-a-haystack situations, as previously they had to grind through PDF documents, PowerPoint documents, and websites, but now with Pinecone, they can ask questions and receive references to documents along with the page numbers where that information exists, so they can use it as a reference or backtrack, especially for things such as FDA approvals where they can quote the exact page number from PDF documents, eliminating hallucination and providing real-time data that relies on an external vector database with enough guardrails to ensure it won't provide information not in the vector database, confining it to the information present in the indexes."
"The best thing about Pinecone is its private local host feature. It displays all the maintenance parameters and lets us view the data sent to the database. We can also see the status of the CD and which application it corresponds to."
"Pinecone has positively impacted our organization by enhancing efficiency for the team, and the long-term effect has been that the chats have become much more personalized due to the memory added through a vector database."
"The semantic search capability is very good."
"Pinecone has positively impacted our organization by enhancing efficiency for the team, and the long-term effect has been that the chats have become much more personalized due to the memory added through a vector database."
"Pinecone's integration with AWS was seamless."
"The most valuable features of the solution are similarity search and maximal marginal relevance search for retrieval purposes."
 

Cons

"The most significant issue I find with Elastic Search is that it gets out of sync, and this has happened in both cases where I have implemented it."
"Ratio aggregation is not supported in this solution."
"I think the pricing of Elastic Search is really, really expensive."
"Enterprise scaling of what have been essentially separate, free open source software (FOSS) products has been a challenge, but the folks at Elastic have published new add-ons (X-Pack and ECE) to help large companies grow ELK to required scales."
"To do what we want to do with Elastic Search, the queries can get complex and require a fuller understanding of the DSL."
"The pricing of this product needs to be more clear because I cannot understand it when I review the website."
"Elastic Search needs to improve its technical support. It should be customer-friendly and have good support."
"There is another solution I'm testing which has a 500 record limit when you do a search on Elastic Enterprise Search. That's the only area in which I'm not sure whether it's a limitation on our end in terms of knowledge or a technical limitation from Elastic Enterprise Search. There is another solution we are looking at that rides on Elastic Enterprise Search. And the limit is for any sort of records that you're doing or data analysis you're trying to do, you can only extract 500 records at a time. I know the open-source nature has a lot of limitations, Otherwise, Elastic Enterprise Search is a fantastic solution and I'd recommend it to anyone."
"Pinecone is good as it is, but had it been on AWS infrastructure, we wouldn't experience some network lags because it's outside AWS."
"Onboarding could be better and smoother."
"One major issue I have noticed with Pinecone is that it does not allow me to search based on metadata."
"One major issue I have noticed with Pinecone is that it does not allow me to search based on metadata."
"For testing purposes, the product should offer support locally as it is one area where the tool has shortcomings."
"Pinecone can be made more budget-friendly."
"I want to suggest that Pinecone requires a login and API key, but I would prefer not to have a login system and to use the environment directly."
"If Pinecone gave us RAG as a service, we'd be more than happy to use that."
 

Pricing and Cost Advice

"Elastic Search is open-source, but you need to pay for support, which is expensive."
"To access all the features available you require both the open source license and the production license."
"we are using a licensed version of the product."
"We are using the Community Edition because Elasticsearch's licensing model is not flexible or suitable for us. They ask for an annual subscription. We also got the development consultancy from Elasticsearch for 60 days or something like that, but they were just trying to do the same trick. That's why we didn't purchase it. We are just using the Community Edition."
"The pricing model is questionable and needs to be addressed because when you would like to have the security they charge per machine."
"The price of Elasticsearch is fair. It is a more expensive solution, like QRadar. The price for Elasticsearch is not much more than other solutions we have."
"We are using the open-sourced version."
"The solution is less expensive than Stackdriver and Grafana."
"I have experience with the tool's free version."
"Pinecone is not cheap; it's actually quite expensive. We find that using Pinecone can raise our budget significantly. On the other hand, using open-source options is more budget-friendly."
"The solution is relatively cheaper than other vector DBs in the market."
"I think Pinecone is cheaper to use than other options I've explored. However, I also remember that they offer a paid version."
report
Use our free recommendation engine to learn which Vector Databases solutions are best for your needs.
881,707 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
12%
Computer Software Company
12%
Manufacturing Company
9%
Retailer
6%
Computer Software Company
14%
University
8%
Manufacturing Company
7%
Financial Services Firm
7%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business37
Midsize Enterprise10
Large Enterprise43
By reviewers
Company SizeCount
Small Business5
Midsize Enterprise2
Large Enterprise3
 

Questions from the Community

What do you like most about ELK Elasticsearch?
Logsign provides us with the capability to execute multiple queries according to our requirements. The indexing is very high, making it effective for storing and retrieving logs. The real-time anal...
What is your experience regarding pricing and costs for ELK Elasticsearch?
On the subject of pricing, Elastic Search is very cost-efficient. You can host it on-premises, which would incur zero cost, or take it as a SaaS-based service, where the expenses remain minimal.
What needs improvement with ELK Elasticsearch?
While Elastic Search is a good product, I see areas for improvement, particularly regarding the misconception that any amount of data can simply be dumped into Elastic Search. When creating an inde...
What do you like most about Pinecone?
We chose Pinecone because it covers most of the use cases.
What needs improvement with Pinecone?
I give Pinecone a nine out of ten because I hope it provides an end-to-end agentic solution, but currently, it doesn't have those agentic capabilities, meaning I have to create a Streamlit applicat...
What is your primary use case for Pinecone?
My main use case for Pinecone is creating vector indexes for GenAI applications. A specific example of how I use Pinecone in one of my projects is utilizing a RAG pipeline where I take text from PD...
 

Comparisons

 

Also Known As

Elastic Enterprise Search, Swiftype, Elastic Cloud
No data available
 

Overview

 

Sample Customers

T-Mobile, Adobe, Booking.com, BMW, Telegraph Media Group, Cisco, Karbon, Deezer, NORBr, Labelbox, Fingerprint, Relativity, NHS Hospital, Met Office, Proximus, Go1, Mentat, Bluestone Analytics, Humanz, Hutch, Auchan, Sitecore, Linklaters, Socren, Infotrack, Pfizer, Engadget, Airbus, Grab, Vimeo, Ticketmaster, Asana, Twilio, Blizzard, Comcast, RWE and many others.
1. Airbnb 2. DoorDash 3. Instacart 4. Lyft 5. Pinterest 6. Reddit 7. Slack 8. Snapchat 9. Spotify 10. TikTok 11. Twitter 12. Uber 13. Zoom 14. Adobe 15. Amazon 16. Apple 17. Facebook 18. Google 19. IBM 20. Microsoft 21. Netflix 22. Salesforce 23. Shopify 24. Square 25. Tesla 26. TikTok 27. Twitch 28. Uber Eats 29. WhatsApp 30. Yelp 31. Zillow 32. Zynga
Find out what your peers are saying about Elastic Search vs. Pinecone and other solutions. Updated: December 2025.
881,707 professionals have used our research since 2012.