Try our new research platform with insights from 80,000+ expert users

Pinecone vs Supabase Vector comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Mar 5, 2025

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Pinecone
Ranking in Vector Databases
6th
Average Rating
8.4
Reviews Sentiment
6.5
Number of Reviews
9
Ranking in other categories
AI Data Analysis (14th), AI Content Creation (3rd)
Supabase Vector
Ranking in Vector Databases
12th
Average Rating
9.0
Reviews Sentiment
5.0
Number of Reviews
3
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of January 2026, in the Vector Databases category, the mindshare of Pinecone is 7.3%, down from 8.3% compared to the previous year. The mindshare of Supabase Vector is 10.4%, up from 2.1% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Vector Databases Market Share Distribution
ProductMarket Share (%)
Pinecone7.3%
Supabase Vector10.4%
Other82.3%
Vector Databases
 

Featured Reviews

Pradeep Gudipati - PeerSpot reviewer
Chief Technology Advisor at Kovaad technologies Pvt Ltd
Faced challenges with metadata filtering but have achieved reliable long-term memory for chat applications
We were looking at multiple options for a vector database, and we found Pinecone to be the easiest to integrate into our solution. Plus, it has a very generous free tier, which helps us as a startup. The best features Pinecone offers are quick setup and good indexing for us. The retrieval mechanisms are fast, and the integration with Python as with JavaScript and TypeScript libraries that Pinecone provides are very robust. Authentication is also very good. The namespaces feature allows us to break down or store data for each user separately, reducing interference and maintaining privacy as an important feature. Pinecone has positively impacted our organization by enhancing efficiency for the team, and the long-term effect has been that the chats have become much more personalized due to the memory added through a vector database. We are seeing that the trainees getting trained on the platform are more satisfied with the results or messages generated by AI.
Kaustubh Sule - PeerSpot reviewer
Co-Founder • Full Stack Developer at Padhakoo
Easy to use, and there is no need to get involved in any tedious deployment process
If you are a business building a social media app, there will be thousands of users for every such app. Each user will have a post or something. When multiple users try to hit the like button on your post or try to comment on your post, each of them would be an API request, and Supabase Vector does not charge for them like. The API requests are kind of unlimited. If you compare Supabase Vector to any of the other services like Firebase, AWS, or Azure, all the tools charge per request. From a scalability standpoint, if you are a small-scale startup and you have around 1,00,000 or 2,00,000 users, then Supabase Vector is a perfect choice for you. I have never heard about any scalability issues in the product. Scalability-wise, I rate the solution a ten of ten.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The most valuable features of the solution are similarity search and maximal marginal relevance search for retrieval purposes."
"The semantic search capability is very good."
"Pinecone has positively impacted my organization by helping people in needle-in-a-haystack situations, as previously they had to grind through PDF documents, PowerPoint documents, and websites, but now with Pinecone, they can ask questions and receive references to documents along with the page numbers where that information exists, so they can use it as a reference or backtrack, especially for things such as FDA approvals where they can quote the exact page number from PDF documents, eliminating hallucination and providing real-time data that relies on an external vector database with enough guardrails to ensure it won't provide information not in the vector database, confining it to the information present in the indexes."
"The best thing about Pinecone is its private local host feature. It displays all the maintenance parameters and lets us view the data sent to the database. We can also see the status of the CD and which application it corresponds to."
"The product's setup phase was easy."
"We chose Pinecone because it covers most of the use cases."
"Pinecone has positively impacted our organization by enhancing efficiency for the team, and the long-term effect has been that the chats have become much more personalized due to the memory added through a vector database."
"The most valuable feature of Pinecone is its managed service aspect. There are many vector databases available, but Pinecone stands out in the market. It is very flexible, allowing us to input any kind of data dimensions into the platform. This makes it easy to use for both technical and non-technical users."
"The platform's role-level security feature is quite effective for spatial data management."
"The tool is easy to use."
"Supabase enables us to lower the skill floor while keeping the ceiling high."
"Supabase enables us to lower the skill floor while keeping the ceiling high."
 

Cons

"Pinecone is good as it is, but had it been on AWS infrastructure, we wouldn't experience some network lags because it's outside AWS."
"For testing purposes, the product should offer support locally as it is one area where the tool has shortcomings."
"The tool does not confirm whether a file is deleted or not."
"One major issue I have noticed with Pinecone is that it does not allow me to search based on metadata."
"Onboarding could be better and smoother."
"If Pinecone gave us RAG as a service, we'd be more than happy to use that."
"One major issue I have noticed with Pinecone is that it does not allow me to search based on metadata."
"Pinecone can be made more budget-friendly."
"The support for React Native CLI is an area with certain shortcomings where improvements are required."
"I think there are still many Postgres features that can be developed further by the Supabase team."
"I think there are still many Postgres features that can be developed further by the Supabase team."
"One area for the solution improvement is the inclusion of more sample code in various programming languages, particularly PHP."
 

Pricing and Cost Advice

"Pinecone is not cheap; it's actually quite expensive. We find that using Pinecone can raise our budget significantly. On the other hand, using open-source options is more budget-friendly."
"I have experience with the tool's free version."
"The solution is relatively cheaper than other vector DBs in the market."
"I think Pinecone is cheaper to use than other options I've explored. However, I also remember that they offer a paid version."
"The solution's cost is reasonable compared to other solutions."
"As per the product's regular pricing plans, the tools are available to users for 20 to 25 USD per month."
report
Use our free recommendation engine to learn which Vector Databases solutions are best for your needs.
881,082 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
14%
Manufacturing Company
8%
Comms Service Provider
7%
Financial Services Firm
7%
Comms Service Provider
15%
Computer Software Company
8%
Healthcare Company
6%
Manufacturing Company
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business4
Midsize Enterprise2
Large Enterprise3
No data available
 

Questions from the Community

What do you like most about Pinecone?
We chose Pinecone because it covers most of the use cases.
What needs improvement with Pinecone?
I give Pinecone a nine out of ten because I hope it provides an end-to-end agentic solution, but currently, it doesn't have those agentic capabilities, meaning I have to create a Streamlit applicat...
What is your primary use case for Pinecone?
My main use case for Pinecone is creating vector indexes for GenAI applications. A specific example of how I use Pinecone in one of my projects is utilizing a RAG pipeline where I take text from PD...
What needs improvement with Supabase Vector?
I think there are still many Postgres features that can be developed further by the Supabase team.
What is your primary use case for Supabase Vector?
I am exploring Supabase for my project on UMKM.
 

Comparisons

 

Overview

 

Sample Customers

1. Airbnb 2. DoorDash 3. Instacart 4. Lyft 5. Pinterest 6. Reddit 7. Slack 8. Snapchat 9. Spotify 10. TikTok 11. Twitter 12. Uber 13. Zoom 14. Adobe 15. Amazon 16. Apple 17. Facebook 18. Google 19. IBM 20. Microsoft 21. Netflix 22. Salesforce 23. Shopify 24. Square 25. Tesla 26. TikTok 27. Twitch 28. Uber Eats 29. WhatsApp 30. Yelp 31. Zillow 32. Zynga
Information Not Available
Find out what your peers are saying about Pinecone vs. Supabase Vector and other solutions. Updated: December 2025.
881,082 professionals have used our research since 2012.