Try our new research platform with insights from 80,000+ expert users

Google Cloud Datalab vs KNIME comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Google Cloud Datalab
Ranking in Data Science Platforms
16th
Average Rating
7.8
Reviews Sentiment
6.4
Number of Reviews
6
Ranking in other categories
Data Visualization (19th)
KNIME
Ranking in Data Science Platforms
2nd
Average Rating
8.2
Reviews Sentiment
7.1
Number of Reviews
60
Ranking in other categories
Data Mining (1st)
 

Mindshare comparison

As of July 2025, in the Data Science Platforms category, the mindshare of Google Cloud Datalab is 1.0%, down from 1.0% compared to the previous year. The mindshare of KNIME is 11.9%, up from 10.3% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

Nilesh Gode - PeerSpot reviewer
Easy to setup, stable and easy to design data pipelines
The scalability is average. We have not faced any issues with scalability. There are more than 500 end users using this solution in our company. It is an integral part of the daily operations. The usage pattern is not a one-time thing; employees regularly access and utilize the application. We use it at a global level with a scattered user base. This means that users don't all use the application at the same time. So, around 300 out of 500 employees use the solution, and this usage is spread out throughout the day.
Laurence Moseley - PeerSpot reviewer
Has a drag-and-drop interface and AI capabilities
It's difficult to pinpoint one single feature because KNIME has so many. For starters, it's very easy to learn. You can get started with just a one-hour video. The drag-and-drop interface makes it user-friendly. For example, if you want to read an Excel file, drag the "read Excel file" node from the repository, configure it by specifying the file location, and run it. This gives you a table with all your data. Next, you can clean the data by handling missing values, selecting specific columns you want to analyze, and then proceeding with your analysis, such as regression or correlation. KNIME has over 4,500 nodes available for download. In addition, KNIME offers various extensions. For instance, the text processing extension allows you to process text data efficiently. It's more powerful than other tools like NVivo and Palantir. KNIME also has AI capabilities. If you're unsure about the next step, the AI assistant can suggest the most frequently used nodes based on your previous work. Another valuable feature is the integration with Python. If you need to perform a task that requires Python, you can simply add a Python node, write the necessary code,

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"In MLOps, when we are designing the data pipeline, the designing of the data pipeline is easy in Google Cloud."
"For me, it has been a stable product."
"The infrastructure is highly reliable and efficient, contributing to a positive experience."
"Google Cloud Datalab is very customizable."
"The APIs are valuable."
"All of the features of this product are quite good."
"KNIME is easy to learn."
"What I like the most is that it works almost out of the box with Random Forest and other Forest nodes."
"It's a very powerful and simple tool to use."
"Automation is most valuable. It allows me to automatically download information from different sources, and once I create a workflow, I can apply it anytime I want. So, there is efficiency at the same time."
"It's a huge tool with machine learning features as well."
"I've tried to utilize KNIME to the fullest extent possible to replace Excel."
"Key features include: very easy-to-use visual interface; Help functions and clear explanations of the functionalities and the used algorithms; Data Wrangling and data manipulation functionalities are certainly sufficient, as well as the looping possibilities which help you to automate parts of the analysis."
"We can deploy the solution in a cluster as well."
 

Cons

"Even if your application is always connected to its database, the processing can be cumbersome. It shouldn't be so complicated."
"The interface should be more user-friendly."
"The product must be made more user-friendly."
"There is room for improvement in the graphical user interface. So that the initial user would use it properly, that would be a good option."
"We have also encountered challenges during our transition period in terms of data control and segmentation. The management of each channel and data structure as it has its own unique characteristics requires very detailed and precise control. The allocation should be appropriate and the complexity increases due to the different time zones and geographic locations of our clients. The process usually involves migrating the existing database sets to gcp and ensure data integrity is maintained. This is the only challenge that we faced while navigating the integers of the solution and honestly it was an interesting and unique experience."
"Connectivity challenges for end-users, particularly when loading data, environments, and libraries, need to be addressed for an enhanced user experience."
"Data visualization needs improvement."
"I wish there were more video training resources for KNIME. The current videos are very short, and most learning is text-based. Longer training sessions would be helpful, especially for complex flowchart use cases. Webinars focusing on starting projects and analyzing data would also be beneficial."
"There are a lot of tools in the product and it would help if they were grouped into classes where you can select a function, rather than a specific tool."
"Though I can use KNIME in a 64-bit platform in the lab, it's missing some features. For example, from my laptop, I can use the image reader feature of KNIME. However, in the lab, the image reader node is missing."
"The main issue with KNIME is that it sometimes uses too much CPU and RAM when working with large amounts of data."
"The current UI is primarily in English. Analyzing data in local languages might present challenges or issues."
"Occasionally, when using the GET object, there might be issues due to the velocity of the lines or the IT system of the commission."
"The graphic features of KNIME need improvement"
 

Pricing and Cost Advice

"It is affordable for us because we have a limited number of users."
"The pricing is quite reasonable, and I would give it a rating of four out of ten."
"The product is cheap."
"KNIME assets are stand alone, as the solution is open source."
"KNIME desktop is free, which is great for analytics teams. Server is well priced, depending on how much support is required."
"I use the tool's free version."
"KNIME is a cheap product. I currently use KNIME's open-source version."
"This is an open-source solution that is free to use."
"The price for Knime is okay."
"Scaling to the on-premises version requires a licensing fee per user that is a bit expensive in comparison to R, Python, and SAS."
"There is a Community Edition and paid versions available."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
860,592 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
23%
University
12%
Computer Software Company
9%
Manufacturing Company
5%
Financial Services Firm
12%
Manufacturing Company
10%
Computer Software Company
9%
University
8%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

What do you like most about Google Cloud Datalab?
Google Cloud Datalab is very customizable.
What needs improvement with Google Cloud Datalab?
Access is always via URL, and unless your network is fast, it would be a little tough in India. In India, if we had a faster network, it would be easier. In a big data environment, like when forcin...
What is your primary use case for Google Cloud Datalab?
It's for our daily data processing, and there's a batch job that executes it. The process involves more than ten servers or systems. Some of them use a mobile network, some are ONTAP networks, and ...
What do you like most about KNIME?
Since KNIME is a no-code platform, it is easy to work with.
What is your experience regarding pricing and costs for KNIME?
I rate the product’s pricing a seven out of ten, where one is cheap and ten is expensive.
What needs improvement with KNIME?
I have seen the potential to interact with Python, which is currently a bit limited. I am interested in the newer version, 5.4, when it becomes available. The machine learning and profileration asp...
 

Also Known As

No data available
KNIME Analytics Platform
 

Overview

 

Sample Customers

Information Not Available
Infocom Corporation, Dymatrix Consulting Group, Soluzione Informatiche, MMI Agency, Estanislao Training and Solutions, Vialis AG
Find out what your peers are saying about Google Cloud Datalab vs. KNIME and other solutions. Updated: June 2025.
860,592 professionals have used our research since 2012.