Try our new research platform with insights from 80,000+ expert users

Dataiku vs Google Cloud Datalab comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Dataiku
Ranking in Data Science Platforms
4th
Average Rating
8.0
Reviews Sentiment
6.8
Number of Reviews
17
Ranking in other categories
No ranking in other categories
Google Cloud Datalab
Ranking in Data Science Platforms
19th
Average Rating
7.8
Reviews Sentiment
6.4
Number of Reviews
6
Ranking in other categories
Data Visualization (17th)
 

Mindshare comparison

As of January 2026, in the Data Science Platforms category, the mindshare of Dataiku is 8.0%, down from 12.1% compared to the previous year. The mindshare of Google Cloud Datalab is 1.4%, up from 1.0% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms Market Share Distribution
ProductMarket Share (%)
Dataiku8.0%
Google Cloud Datalab1.4%
Other90.6%
Data Science Platforms
 

Featured Reviews

PriyankaSharma3 - PeerSpot reviewer
Cdao/Global Head Of Data And Analytics at Givaudan Roure
Unified platform has accelerated model development and improved collaborative data science work
I think Dataiku could be improved or enhanced in future releases with more 'talk to my data' capabilities, maybe more NLP features, and maybe a platform to build agents. These improvements would benefit me and my processes because they will help us to continue using Dataiku as one platform; right now we are exploring other platforms for the features which are missing, and if they are available within the same platform, I think it will increase the usage of Dataiku further. I think the pricing and licensing of Dataiku is a bit expensive; it could be improved further, and I think they should have a different kind of licensing model as well.
LJ
System Architect at UST Global España
dashboards are good and data visualization is more meaningful for the end-user
Access is always via URL, and unless your network is fast, it would be a little tough in India. In India, if we had a faster network, it would be easier. In a big data environment, like when forcing your database with over a billion records, it can be tough for the end-user to manage the data. You need to have a single entity system in each environment. It's not because of GCP, but it would be great to have options like MongoDB or other similar tools in GCP. Then, we wouldn't always need to connect to the cloud and execute SQL queries. Even if your application is always connected to its database, the processing can be cumbersome. It shouldn't be so complicated. Once the data is collected, it should be easily sorted.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The most valuable feature is the set of visual data preparation tools."
"I like the interface, which is probably my favorite part of the solution. It is really user-friendly for an IT person."
"The best feature in Dataiku is that once the data is connected in the underneath layer, it flows exceptionally smoothly if you know how to tweak it."
"I consider the return on investment with Dataiku valuable because for us, it is one single platform where all our data scientists come together and work on any model building, so it is collaboration, plus having everything in one place, organized, having proper project management, and then built-in capabilities which help to facilitate model building."
"Traceability is vital since I manage many cohorts, and collaboration is key as I have multiple engineers substituting for one another."
"The best features Dataiku offers include the ability for users to use the node without having to code and the functionality related to low-code/no-code."
"The best features Dataiku offers that help me with my demand forecasting and data science projects include having a complete overview of the flow directly from the flowchart, allowing me to observe all the steps in a single overview, and the ability to use a no-code, low-code node."
"One of the valuable features of Dataiku is the workflow capability."
"Google Cloud Datalab is very customizable."
"All of the features of this product are quite good."
"In MLOps, when we are designing the data pipeline, the designing of the data pipeline is easy in Google Cloud."
"The APIs are valuable."
"The infrastructure is highly reliable and efficient, contributing to a positive experience."
"For me, it has been a stable product."
 

Cons

"One of the main challenges was collaboration. Developers typically use GitHub to push and manage code, but integrating GitHub with Dataiku was complicated."
"In the next release of this solution, I would like to see deep learning better integrated into the tool and not simply an extension or plugin."
"There were stability issues: 1) SQL operations, such as partitioning, had bugs and showed wrong results. 2) Due to server downtime, scheduled processes used to fail. 3) Access to project folders was compromised (privacy issue) with wrong people getting access to confidential project folders."
"In terms of enhancing collaboration within my team, I would not say Dataiku is the best one because it's so expensive."
"We still encounter some integration issues."
"I think it would help if Data Science Studio added some more features and improved the data model."
"I have not seen a return on investment with Dataiku in terms of time saved, money saved, or fewer employees needed."
"Dataiku still needs some coding, and that could be a difference where business data scientists would go for DataRobot more than Dataiku."
"We have also encountered challenges during our transition period in terms of data control and segmentation. The management of each channel and data structure as it has its own unique characteristics requires very detailed and precise control. The allocation should be appropriate and the complexity increases due to the different time zones and geographic locations of our clients. The process usually involves migrating the existing database sets to gcp and ensure data integrity is maintained. This is the only challenge that we faced while navigating the integers of the solution and honestly it was an interesting and unique experience."
"The interface should be more user-friendly."
"Connectivity challenges for end-users, particularly when loading data, environments, and libraries, need to be addressed for an enhanced user experience."
"There is room for improvement in the graphical user interface. So that the initial user would use it properly, that would be a good option."
"Even if your application is always connected to its database, the processing can be cumbersome. It shouldn't be so complicated."
"The product must be made more user-friendly."
 

Pricing and Cost Advice

"Pricing is pretty steep. Dataiku is also not that cheap."
"The annual licensing fees are approximately €20 ($22 USD) per key for the basic version and €40 ($44 USD) per key for the version with everything."
"The product is cheap."
"It is affordable for us because we have a limited number of users."
"The pricing is quite reasonable, and I would give it a rating of four out of ten."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
881,082 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
17%
Computer Software Company
9%
Manufacturing Company
9%
Energy/Utilities Company
6%
Financial Services Firm
25%
Computer Software Company
10%
University
9%
Manufacturing Company
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business4
Midsize Enterprise2
Large Enterprise11
No data available
 

Questions from the Community

What is your experience regarding pricing and costs for Dataiku Data Science Studio?
I find the pricing of Dataiku quite affordable for our customers, as they are usually large companies. However, it is a pricey solution and I primarily recommend it to bigger companies.
What needs improvement with Dataiku Data Science Studio?
To improve Dataiku, it could enhance its visualization features, as it is not possible in Dataiku to create direct visualizations or to integrate a web app directly or in a simpler way as it is pos...
What is your primary use case for Dataiku Data Science Studio?
My main use case for Dataiku is for data science and AI projects. I use Dataiku for a demand forecasting use case where the objective is to predict the demand for each product for the next four mon...
What do you like most about Google Cloud Datalab?
Google Cloud Datalab is very customizable.
What needs improvement with Google Cloud Datalab?
Access is always via URL, and unless your network is fast, it would be a little tough in India. In India, if we had a faster network, it would be easier. In a big data environment, like when forcin...
What is your primary use case for Google Cloud Datalab?
It's for our daily data processing, and there's a batch job that executes it. The process involves more than ten servers or systems. Some of them use a mobile network, some are ONTAP networks, and ...
 

Also Known As

Dataiku DSS
No data available
 

Overview

 

Sample Customers

BGL BNP Paribas, Dentsu Aegis, Link Mobility Group, AramisAuto
Information Not Available
Find out what your peers are saying about Dataiku vs. Google Cloud Datalab and other solutions. Updated: December 2025.
881,082 professionals have used our research since 2012.