Try our new research platform with insights from 80,000+ expert users

Google Cloud Datalab vs KNIME Business Hub comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Feb 8, 2026

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Google Cloud Datalab
Ranking in Data Science Platforms
19th
Average Rating
7.8
Reviews Sentiment
6.4
Number of Reviews
6
Ranking in other categories
Data Visualization (17th)
KNIME Business Hub
Ranking in Data Science Platforms
3rd
Average Rating
8.2
Reviews Sentiment
7.1
Number of Reviews
60
Ranking in other categories
Data Mining (1st)
 

Mindshare comparison

As of February 2026, in the Data Science Platforms category, the mindshare of Google Cloud Datalab is 1.5%, up from 0.9% compared to the previous year. The mindshare of KNIME Business Hub is 7.5%, down from 11.4% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms Market Share Distribution
ProductMarket Share (%)
KNIME Business Hub7.5%
Google Cloud Datalab1.5%
Other91.0%
Data Science Platforms
 

Featured Reviews

LJ
System Architect at UST Global España
dashboards are good and data visualization is more meaningful for the end-user
Access is always via URL, and unless your network is fast, it would be a little tough in India. In India, if we had a faster network, it would be easier. In a big data environment, like when forcing your database with over a billion records, it can be tough for the end-user to manage the data. You need to have a single entity system in each environment. It's not because of GCP, but it would be great to have options like MongoDB or other similar tools in GCP. Then, we wouldn't always need to connect to the cloud and execute SQL queries. Even if your application is always connected to its database, the processing can be cumbersome. It shouldn't be so complicated. Once the data is collected, it should be easily sorted.
DG
BI Analyst at a photography company with 11-50 employees
Enables fast project development with efficient workflow modifications and promising features while offering modularity and reusability
KNIME is simple and allows for fast project development due to its reusability. I appreciate the ability to make improvements or modifications in existing workflows. Although I have not yet used the forecasting and customer profiling features, I find them promising. Another effective feature is the ability to use GET request objects to retrieve data from websites or APIs. This makes iterative steps easy to manage. It is more elastic and modern compared to SAP Data Services, allowing node creation and regrouping components or steps for reuse in different projects.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"All of the features of this product are quite good."
"In MLOps, when we are designing the data pipeline, the designing of the data pipeline is easy in Google Cloud."
"The infrastructure is highly reliable and efficient, contributing to a positive experience."
"For me, it has been a stable product."
"Google Cloud Datalab is very customizable."
"The APIs are valuable."
"I've tried to utilize KNIME to the fullest extent possible to replace Excel."
"Overall KNIME serves its purpose and does a good job."
"I am impressed by the modularity and reusability in KNIME, especially the ability to make small adjustments to object configurations."
"It offers a node-based data integration and processing system connected through a user-friendly drag-and-drop interface. This makes it an excellent choice for data analytics and engineering tasks."
"Valuable features include visual workflow creation, workflow variables (parameterisation), automatic caching of all intermediate data sets in the workflow, scheduling with the server."
"The tool's analytic capabilities are good."
"Key features include: very easy-to-use visual interface; Help functions and clear explanations of the functionalities and the used algorithms; Data Wrangling and data manipulation functionalities are certainly sufficient, as well as the looping possibilities which help you to automate parts of the analysis."
"What I like the most is that it works almost out of the box with Random Forest and other Forest nodes."
 

Cons

"We have also encountered challenges during our transition period in terms of data control and segmentation. The management of each channel and data structure as it has its own unique characteristics requires very detailed and precise control. The allocation should be appropriate and the complexity increases due to the different time zones and geographic locations of our clients. The process usually involves migrating the existing database sets to gcp and ensure data integrity is maintained. This is the only challenge that we faced while navigating the integers of the solution and honestly it was an interesting and unique experience."
"The interface should be more user-friendly."
"Connectivity challenges for end-users, particularly when loading data, environments, and libraries, need to be addressed for an enhanced user experience."
"Even if your application is always connected to its database, the processing can be cumbersome. It shouldn't be so complicated."
"The product must be made more user-friendly."
"There is room for improvement in the graphical user interface. So that the initial user would use it properly, that would be a good option."
"It could be easier to use."
"I would prefer to have more connectivity."
"The solution is inconvenient when it comes to wrangling data that includes multiple steps or features because each step or feature requires its own icon."
"The license is quite expensive for us."
"There are some parameters that I would like to have at a bigger scale. The upper limit of one node that tries to find spots or areas in photos was too small for us. It would need to be bigger."
"Compared to the other data tools on the market, the user interface can be improved."
"When deploying models on a regular system, it works fine. However, when accuracy is a priority, hyperparameter tuning is necessary. Currently, KNIME doesn't have the best tools for this which they could improve in this area."
"KNIME is not scalable."
 

Pricing and Cost Advice

"It is affordable for us because we have a limited number of users."
"The pricing is quite reasonable, and I would give it a rating of four out of ten."
"The product is cheap."
"We're using the free academic license just locally. I went for KNIME because they have a free academic license."
"At this time, I am using the free version of Knime."
"There is a Community Edition and paid versions available."
"For beginners, the free desktop version is very attractive, but the full server version can be more expensive. I have only used the free version and it offers a fair pricing system. I have been promoting it to others without any compensation or request from the company, simply because I am enthusiastic about it. I am not aware of the pricing for the server version, but it seems to be widely used."
"It's an open-source solution."
"This is a free open-source solution."
"KNIME desktop is free, which is great for analytics teams. Server is well priced, depending on how much support is required."
"KNIME is free as a stand-alone desktop-based platform but if you want to get a KNIME server then you can find the cost on their website."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
881,733 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
24%
Computer Software Company
10%
University
9%
Comms Service Provider
6%
Financial Services Firm
12%
University
9%
Manufacturing Company
9%
Educational Organization
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
By reviewers
Company SizeCount
Small Business20
Midsize Enterprise16
Large Enterprise29
 

Questions from the Community

What do you like most about Google Cloud Datalab?
Google Cloud Datalab is very customizable.
What needs improvement with Google Cloud Datalab?
Access is always via URL, and unless your network is fast, it would be a little tough in India. In India, if we had a faster network, it would be easier. In a big data environment, like when forcin...
What is your primary use case for Google Cloud Datalab?
It's for our daily data processing, and there's a batch job that executes it. The process involves more than ten servers or systems. Some of them use a mobile network, some are ONTAP networks, and ...
What do you like most about KNIME?
Since KNIME is a no-code platform, it is easy to work with.
What is your experience regarding pricing and costs for KNIME?
I rate the product’s pricing a seven out of ten, where one is cheap and ten is expensive.
What needs improvement with KNIME?
I have seen the potential to interact with Python, which is currently a bit limited. I am interested in the newer version, 5.4, when it becomes available. The machine learning and profileration asp...
 

Also Known As

No data available
KNIME Analytics Platform
 

Overview

 

Sample Customers

Information Not Available
Infocom Corporation, Dymatrix Consulting Group, Soluzione Informatiche, MMI Agency, Estanislao Training and Solutions, Vialis AG
Find out what your peers are saying about Google Cloud Datalab vs. KNIME Business Hub and other solutions. Updated: December 2025.
881,733 professionals have used our research since 2012.