Our primary use cases for UiPath Document Understanding are processing invoices for five different clients and importing/exporting documents to extract vital information, mainly from unstructured documents. These five clients are from various industries, including transportation, scientific research, food services, and clothing.
I processed 400 documents per day for one client and 20 documents per day for the second client.
The documents processed were in PDF format.
90 percent of the 400 documents processed per day for a single client were fully automated. However, only 50 percent of the 20 documents per day were automated due to their greater level of unstructured nature. As a result, the remaining 50 percent had to be sent to the action center.
AI and machine learning for Document Understanding are game changers. Machine learning was helpful in identifying the various areas of the documents from which I needed to extract different types of information, making the process quicker.
The default model didn't work for me because I needed to extract information from documents written in French. Thus, I had to create my own model using AI, which proved to be exceptionally beneficial for handling the French text and its accents.
Integrating UiPath Document Understanding with other systems and applications in our environment works well. The solution was able to retrieve the PDF document from an email, extract the details using the command, and apply those details to an application, saving a substantial amount of time.
UiPath Document Understanding serves as a safeguard in relation to cost and time savings, as it diminishes the manual workload for employees and minimizes errors. For a job that took a human eight hours to complete, the bot was able to do it in three hours.
The extent of human validation needed for Document Understanding varies for each client. For one client, no validation was necessary as the solution effectively extracted all required information from the documents. However, for another client dealing with diverse document types, errors occasionally occurred due to character placement. This was particularly evident when email addresses were positioned differently, some at the top and others at the bottom of the documents, posing challenges to the robot's detection capabilities. In such instances, a validation process was implemented. Every seven days, ten percent of the batch would be sent to the Action Center for validation.
The time saved with UiPath Document Understanding is exemplified by an organization that previously had to spend three days manually extracting information from 400 documents every month. However, with UiPath Document Understanding, this task now only takes two hours.
Machine learning is the most valuable feature of UiPath Document Understanding.
I encountered difficulties with UiPath Document Understanding in determining the appropriate OCR to use for certain files. These files required extracting both the company logo from the page and the digitized text, posing a challenge. The OCR engine faces difficulties when processing signatures and scanned documents with unclear handwritten text.
The robot faces difficulties in recognizing when there are multiple documents on a single page. This necessitates manual intervention by first splitting the document and then re-digitizing each part separately.
I would like a split feature in a future release of UiPath Document Understanding.
I have been using UiPath Document Understanding for one month.
UiPath Document Understanding is extremely stable.
UiPath Document Understanding is scalable.
The technical support responds promptly and strives to resolve our issues quickly. However, there is room for improvement. For instance, we encountered an issue with the Action Center, and the support team was unable to determine the cause for three days. Eventually, someone from my team resolved the issue.
The initial setup was a bit complex.
I also assessed FlexiCapture, but I discovered that UiPath Document Understanding was more user-friendly. Coming from a scientific background, I found that UiPath Document Understanding offered a more logical and less complex solution.
I would rate UiPath Document Understanding nine out of ten.
It took me one week to study UiPath Document Understanding and to present it to my organization.
I realized the benefits of UiPath Document Understanding once I completed my first project.
The quantity of personnel needed to maintain the solution relies on each project. In the most recent project I participated in, we needed a total of two individuals, one of whom was an administrator from our team.
When using UiPath Document Understanding, always ensure that the number of structures is the same each time to prevent errors.
I believe that utilizing communication mining would be more effective with the AI Center.