Try our new research platform with insights from 80,000+ expert users

Amazon Comprehend vs Microsoft Azure Machine Learning Studio comparison

 

Comparison Buyer's Guide

Executive Summary

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Amazon Comprehend
Ranking in Data Science Platforms
19th
Average Rating
8.0
Reviews Sentiment
7.4
Number of Reviews
2
Ranking in other categories
No ranking in other categories
Microsoft Azure Machine Lea...
Ranking in Data Science Platforms
4th
Average Rating
7.6
Reviews Sentiment
7.0
Number of Reviews
61
Ranking in other categories
AI Development Platforms (3rd)
 

Mindshare comparison

As of April 2025, in the Data Science Platforms category, the mindshare of Amazon Comprehend is 0.5%, down from 0.8% compared to the previous year. The mindshare of Microsoft Azure Machine Learning Studio is 5.3%, down from 9.4% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

Ashish Lata - PeerSpot reviewer
Integration with automation tools enhances customer sentiment analysis
Comprehend is a useful service for sentiment analysis as it analyzes customer transcripts to evaluate interactions between customers and agents. It provides scores indicating whether sentiments are positive, negative, or neutral. The integration with AWS services like DynamoDB and Lambda facilitates automated analysis, contributing to more informed assessments of customer interactions.
Takayuki Umehara - PeerSpot reviewer
Streamlined workflows with drag and drop convenience but needs enhancements in AI
I use Machine Learning Studio for system reselling and integration Machine Learning Studio is easy to use, with a significant feature being the drag and drop interface that enhances workflow without any complaints. It provides a return on investment and cost savings, proving beneficial for…

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"I am totally happy with AWS support, as they provide excellent solutions."
"Amazon Comprehend works with a large pool of doctors. They're building the product based on working with domain experts."
"The product supports open-source tools."
"The product's initial setup phase is easy."
"The product is well organized. The thing is how we will get the models to work within our code. We have some suggestions there, but we want to gain more experience and be ready to answer that because we are currently working on this and don't have all the answers yet. The tool is well organized. What I am very happy about is the ease of deploying new resources. You can easily create your pipeline within minutes."
"Machine Learning Studio is easy to use, with a significant feature being the drag and drop interface that enhances workflow without any complaints."
"The most valuable feature of Microsoft Azure Machine Learning Studio is the ease of use for starting projects. It's simple to connect and view the results. Additionally, the solution works well with other Microsoft solutions, such as Power Automate or SQL Server. It is easy to use and to connect for analytics."
"Scalability, in terms of running experiments concurrently is good. At max, I was able to run three different experiments concurrently."
"The solution is easy to use and has good automation capabilities in conjunction with Azure DevOps."
"The solution is very fast and simple for a data science solution."
 

Cons

"There is room for improvement in terms of accuracy. For example, when a sentence expresses a negative sentiment, such as 'I want to cancel my credit card,' it is crucial for the system to accurately identify it as negative."
"It is a bit complex to scale. It is still evolving as a product."
"The solution must increase the amount of data sources that can be integrated."
"In the future, I would like to see more AI consultation like image and video classification, and improvement in the presentation of data."
"I would like to see modules to handle Deep Learning frameworks."
"I have found Databricks is a better solution because it has a lot of different cluster choices and better integration with MLflow, which is much easier to handle in a machine learning system."
"Technical support could improve their turnaround time."
"Easier customization and configuration would be beneficial."
"Operability with R could be improved."
"It would be nice if the product offered more accessibility in general."
 

Pricing and Cost Advice

Information not available
"There is a lack of certainty with the solution's pricing."
"The pricing for Microsoft products can be complex due to changes and being cloud-based, so it's not straightforward. I've been familiar with it for years, but sometimes details about product licenses and distribution can be unclear. For Microsoft Azure Machine Learning Studio specifically, I would rate the price a six out of ten."
"ML Studio's pricing becomes a numbers game."
"The product is not that expensive."
"On a scale from one to ten, with ten being overpriced, I would rate the price of this solution at six."
"There isn’t any such expensive costs and only a standard license is required."
"The solution cost is high."
"I am paying for it following a pay-as-you-go. So, the more I use it, the more it costs."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
845,040 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
No data available
Financial Services Firm
13%
Computer Software Company
11%
Manufacturing Company
10%
Healthcare Company
7%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

What needs improvement with Amazon Comprehend?
Regarding improvements, I would focus on accuracy. For example, if a customer says, 'I want to cancel my credit card,' it should clearly be identified as a negative sentiment. Improving accuracy in...
What is your primary use case for Amazon Comprehend?
I have used Amazon Comprehend primarily for sentiment analysis in my project. I analyze customer transcripts to determine if they are satisfied with the agents they interact with. I store the trans...
What advice do you have for others considering Amazon Comprehend?
I would rate Amazon Comprehend an eight out of ten because there is always room for improvement, especially in terms of accuracy. For those new to Comprehend, understanding its usage and reviewing ...
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
What do you like most about Microsoft Azure Machine Learning Studio?
The learning curve is very low. Operationalizing the model is also very easy within the Azure ecosystem.
What is your experience regarding pricing and costs for Microsoft Azure Machine Learning Studio?
Pricing is considered to be top-segment and should be improved. I rate the pricing as three or four on a scale of one to ten in terms of affordability.
 

Also Known As

No data available
Azure Machine Learning, MS Azure Machine Learning Studio
 

Overview

 

Sample Customers

LexisNexis, Vibes, FINRA, VidMob
Walgreens Boots Alliance, Schneider Electric, BP
Find out what your peers are saying about Amazon Comprehend vs. Microsoft Azure Machine Learning Studio and other solutions. Updated: March 2025.
845,040 professionals have used our research since 2012.