Try our new research platform with insights from 80,000+ expert users

Amazon Comprehend vs Microsoft Azure Machine Learning Studio comparison

 

Comparison Buyer's Guide

Executive Summary

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Amazon Comprehend
Ranking in Data Science Platforms
19th
Average Rating
8.0
Reviews Sentiment
7.4
Number of Reviews
2
Ranking in other categories
No ranking in other categories
Microsoft Azure Machine Lea...
Ranking in Data Science Platforms
4th
Average Rating
7.8
Reviews Sentiment
7.1
Number of Reviews
62
Ranking in other categories
AI Development Platforms (4th)
 

Mindshare comparison

As of July 2025, in the Data Science Platforms category, the mindshare of Amazon Comprehend is 0.4%, down from 0.7% compared to the previous year. The mindshare of Microsoft Azure Machine Learning Studio is 5.1%, down from 7.8% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

Ashish Lata - PeerSpot reviewer
Integration with automation tools enhances customer sentiment analysis
Comprehend is a useful service for sentiment analysis as it analyzes customer transcripts to evaluate interactions between customers and agents. It provides scores indicating whether sentiments are positive, negative, or neutral. The integration with AWS services like DynamoDB and Lambda facilitates automated analysis, contributing to more informed assessments of customer interactions.
Takayuki Umehara - PeerSpot reviewer
Streamlined workflows with drag and drop convenience but needs enhancements in AI
I use Machine Learning Studio for system reselling and integration Machine Learning Studio is easy to use, with a significant feature being the drag and drop interface that enhances workflow without any complaints. It provides a return on investment and cost savings, proving beneficial for…

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"I am totally happy with AWS support, as they provide excellent solutions."
"Amazon Comprehend works with a large pool of doctors. They're building the product based on working with domain experts."
"It is a scalable solution…It is a pretty stable solution…The solution's initial setup process was pretty straightforward."
"Their support is helpful."
"It is very easy to test different kinds of machine-learning algorithms with different parameters. You choose the algorithm, drag and drop to the workspace, and plug the dataset into this component."
"ML Studio is very easy to maintain."
"Microsoft Azure Machine Learning Studio is easy to use and deploy."
"The product's standout feature is a robust multi-file network with limited availability."
"The most valuable feature is data normalization."
"The solution is really scalable."
 

Cons

"There is room for improvement in terms of accuracy. For example, when a sentence expresses a negative sentiment, such as 'I want to cancel my credit card,' it is crucial for the system to accurately identify it as negative."
"It is a bit complex to scale. It is still evolving as a product."
"The AutoML feature is very basic and they should improve it by using a more robust algorithm."
"As for the areas for improvement in Microsoft Azure Machine Learning Studio, I've provided feedback to Microsoft. My company is a Gold Partner of Microsoft, so I provided my feedback in another forum. Right now, it is the number of algorithms available in the designer that has to be improved, though I'm sure Microsoft does it regularly. When you take a use case approach, Microsoft has done that in a lot of places, but not on the Microsoft Azure Machine Learning Studio designer. When I say use case basis, I meant recommending a product or recommending similar products, so if Microsoft can list out use cases and give me a template, it will save me a lot of time and a lot of work because I don't have to scratch my head on which algorithm is better, and I can go with what's recommended by Microsoft. I'm sure that isn't a big task for the Microsoft team who must have seen thousands of use cases already, so out of that experience if the team can come up with a standard template, I'm sure it'll help a lot of organizations cut down on the development time, as well as going with the best industry-standard algorithms rather than experimenting with mine. What I'd like to see in the next version of Microsoft Azure Machine Learning Studio, apart from the use case template, is the improvement of the availability of libraries. Microsoft should also upgrade the Python versions because the old version of Python is still supported and it takes time for Microsoft to upgrade the support for Python. The pace of upgrading Python versions of Microsoft Azure Machine Learning Studio and making those libraries available should be sped up or increased."
"In the future, I would like to see more AI consultation like image and video classification, and improvement in the presentation of data."
"Stability-wise, you may face certain problems when you fail to refresh the data in the solution."
"The regulatory requirements of the product need improvement."
"There should be data access security, a role level security. Right now, they don't offer this."
"It is not easy. It is a complex solution. It takes some time to get exposed to all the concepts. We're trying to have a CI/CD pipeline to deploy a machine learning model using negative actions. It was not easy. The components that we're using might have something to do with this."
"The initial setup time of the containers to run the experiment is a bit long."
 

Pricing and Cost Advice

Information not available
"I would rate the pricing an eight out of ten, with ten being very expensive. Not very expensive, not very cheap."
"When we got our first models and were ready for the user acceptance testing, our licensing fees were between €2,500 ($2,750 USD) and €3,000 ($3,300 USD) monthly."
"We pay only the Azure costs for what we use, which involves some subscription costs. But essentially, you pay for what you use. There are no extra costs in addition to the standard licensing fees."
"In terms of pricing, for any cloud solution, you should know the tricks of the trade and how to use it, otherwise, you'll end up paying a lot of money irrespective of the cloud provider, so at least for Microsoft Azure Machine Learning Studio pricing versus AWS, I would rate it three out of five, with one being the most expensive, and five being the cheapest. It could be cheaper, but you also have to be careful when choosing the plans, for example, consider the architecture and a lot of other factors before choosing your plan, if you don't want to end up paying more. If your cloud provider has an optimizer that seems to be available in every provider, that would keep alerting you in terms of resources not being used as much, then that would help you with budgeting."
"To use MLS is fairly cheap. Even the paid account is something like $20/month, unless you are provisioning large numbers of VMs for a Hadoop cluster. The main MS makes money with this solution is forcing the user to deploy their model on REST API, and being charged each time the API is accessed. There are several pricing tiers for the API. If you do not use the API, then value of MLS is to create rapid experiments ($20/month). The resulting model is not exportable to use, thus you’ll have to recreate the algorithms in either R or Python, which is what I did. MLS results gave me a direction to work with, the actual work is mostly done in R and Python outside of MLS."
"There is a lack of certainty with the solution's pricing."
"I used the free student license for a few months to operate the solution, but I'll have to pay for it if I want to do more now."
"On a scale from one to ten, with ten being overpriced, I would rate the price of this solution at six."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
860,592 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
No data available
Financial Services Firm
13%
Computer Software Company
10%
Manufacturing Company
10%
Healthcare Company
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

What needs improvement with Amazon Comprehend?
Regarding improvements, I would focus on accuracy. For example, if a customer says, 'I want to cancel my credit card,' it should clearly be identified as a negative sentiment. Improving accuracy in...
What is your primary use case for Amazon Comprehend?
I have used Amazon Comprehend primarily for sentiment analysis in my project. I analyze customer transcripts to determine if they are satisfied with the agents they interact with. I store the trans...
What advice do you have for others considering Amazon Comprehend?
I would rate Amazon Comprehend an eight out of ten because there is always room for improvement, especially in terms of accuracy. For those new to Comprehend, understanding its usage and reviewing ...
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
What do you like most about Microsoft Azure Machine Learning Studio?
The learning curve is very low. Operationalizing the model is also very easy within the Azure ecosystem.
What is your experience regarding pricing and costs for Microsoft Azure Machine Learning Studio?
The pricing for Microsoft Azure Machine Learning Studio is reasonable since it's pay as you go, meaning it won't cost excessively unless specific resources are used.
 

Also Known As

No data available
Azure Machine Learning, MS Azure Machine Learning Studio
 

Overview

 

Sample Customers

LexisNexis, Vibes, FINRA, VidMob
Walgreens Boots Alliance, Schneider Electric, BP
Find out what your peers are saying about Amazon Comprehend vs. Microsoft Azure Machine Learning Studio and other solutions. Updated: June 2025.
860,592 professionals have used our research since 2012.