Try our new research platform with insights from 80,000+ expert users

Amazon Comprehend vs Amazon SageMaker comparison

 

Comparison Buyer's Guide

Executive Summary

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Amazon Comprehend
Ranking in Data Science Platforms
19th
Average Rating
8.0
Reviews Sentiment
7.4
Number of Reviews
2
Ranking in other categories
No ranking in other categories
Amazon SageMaker
Ranking in Data Science Platforms
3rd
Average Rating
7.8
Reviews Sentiment
7.1
Number of Reviews
36
Ranking in other categories
AI Development Platforms (5th)
 

Mindshare comparison

As of April 2025, in the Data Science Platforms category, the mindshare of Amazon Comprehend is 0.5%, down from 0.8% compared to the previous year. The mindshare of Amazon SageMaker is 7.3%, down from 9.8% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

Ashish Lata - PeerSpot reviewer
Integration with automation tools enhances customer sentiment analysis
Comprehend is a useful service for sentiment analysis as it analyzes customer transcripts to evaluate interactions between customers and agents. It provides scores indicating whether sentiments are positive, negative, or neutral. The integration with AWS services like DynamoDB and Lambda facilitates automated analysis, contributing to more informed assessments of customer interactions.
Hemant Paralkar - PeerSpot reviewer
Improves team collaboration with advanced feature sharing but needs a better user experience
Improvement is needed in the no-code and low-code capabilities of Amazon SageMaker. This would empower citizen data scientists to utilize the tool more effectively since many data scientists do not have a core development background. Additionally, dealing with frequent UI updates can be challenging, especially for infrastructure architects like myself. It involves effort to migrate to new UIs, making the updates not seamless. User auditing requires enhancements as tracking operations performed by users can be difficult due to dynamic IP validation and role propagation.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Amazon Comprehend works with a large pool of doctors. They're building the product based on working with domain experts."
"I am totally happy with AWS support, as they provide excellent solutions."
"They offer insights into everyone making calls in my organization."
"The most tool's valuable feature, in my experience, is hyperparameter tuning. It allows us to test different parameters for the same model in parallel, which helps us quickly identify the configuration that yields the highest accuracy. This parallel computing capability saves us a lot of time."
"The most valuable features are the ability to store artifacts and gather reports and measures from experiments."
"The tool makes our ML model development a bit more efficient because everything is in one environment."
"The solution's ability to improve work at my organization stems from the ensemble model and a combination of various models it provides."
"The most valuable feature of Amazon SageMaker is that you don't have to do any programming in order to perform some of your use cases."
"The support is very good with well-trained engineers whose training curriculum is rigorous."
"The technical support from AWS is excellent."
 

Cons

"There is room for improvement in terms of accuracy. For example, when a sentence expresses a negative sentiment, such as 'I want to cancel my credit card,' it is crucial for the system to accurately identify it as negative."
"It is a bit complex to scale. It is still evolving as a product."
"When starting a new session, the waiting time can be quite long, ranging from two to five minutes."
"Lacking in some machine learning pipelines."
"Having all documentation easily accessible on the front page of SageMaker would be a great improvement."
"The payment and monitoring metrics are a bit confusing not only for Amazon SageMaker but also for the range of other products that fall under AWS, especially for a new user of the product."
"I had to create custom templates for labeling multi-data sets, such as text and images, which was time-consuming."
"I would say the IDE is quite immature, but it is still in its infancy, so I expect it to get better over time."
"The main challenge with Amazon SageMaker is the integrations."
"One area where Amazon SageMaker could improve is its pricing. The high costs can drive companies to explore other cloud options. Additionally, while generally good, the updates sometimes come with bugs, and the documentation could be much better. More examples and clearer guidance would be helpful."
 

Pricing and Cost Advice

Information not available
"On a scale from one to ten, where one is cheap, and ten is expensive, I rate the solution's pricing a six out of ten."
"The solution is relatively cheaper."
"The support costs are 10% of the Amazon fees and it comes by default."
"I would rate the solution's price a ten out of ten since it is very high."
"The tool's pricing is reasonable."
"Databricks solution is less costly than Amazon SageMaker."
"The cost offers a pay-as-you-go pricing model. It depends on the instance that you do."
"You don't pay for Sagemaker. You only pay for the compute instances in your storage."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
845,040 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
No data available
Financial Services Firm
19%
Educational Organization
13%
Computer Software Company
11%
Manufacturing Company
8%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

What needs improvement with Amazon Comprehend?
Regarding improvements, I would focus on accuracy. For example, if a customer says, 'I want to cancel my credit card,' it should clearly be identified as a negative sentiment. Improving accuracy in...
What is your primary use case for Amazon Comprehend?
I have used Amazon Comprehend primarily for sentiment analysis in my project. I analyze customer transcripts to determine if they are satisfied with the agents they interact with. I store the trans...
What advice do you have for others considering Amazon Comprehend?
I would rate Amazon Comprehend an eight out of ten because there is always room for improvement, especially in terms of accuracy. For those new to Comprehend, understanding its usage and reviewing ...
How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
What do you like most about Amazon SageMaker?
We've had experience with unique ML projects using SageMaker. For example, we're developing a platform similar to ChatGPT that requires models. We utilize Amazon SageMaker to create endpoints for t...
What is your experience regarding pricing and costs for Amazon SageMaker?
Before deploying SageMaker, I reviewed the pricing, especially for notebook instances. The cost for small to medium instances is not very high.
 

Also Known As

No data available
AWS SageMaker, SageMaker
 

Overview

 

Sample Customers

LexisNexis, Vibes, FINRA, VidMob
DigitalGlobe, Thomson Reuters Center for AI and Cognitive Computing, Hotels.com, GE Healthcare, Tinder, Intuit
Find out what your peers are saying about Amazon Comprehend vs. Amazon SageMaker and other solutions. Updated: March 2025.
845,040 professionals have used our research since 2012.