

Find out in this report how the two Cloud Data Warehouse solutions compare in terms of features, pricing, service and support, easy of deployment, and ROI.
For a lot of different tasks, including machine learning, it is a nice solution.
When it comes to big data processing, I prefer Databricks over other solutions.
They help with billing, cost determination, IAM properties, security compliance, and deployment and migration activities.
We get all call support, screen sharing support, and immediate support, so there are no problems.
I would rate the technical support from Amazon as ten out of ten.
Whenever we reach out, they respond promptly.
As of now, we are raising issues and they are providing solutions without any problems.
I rate the technical support as fine because they have levels of technical support available, especially partners who get really good support from Databricks on new features.
Scalability can be provisioned using the auto-scaling feature, EC2 instances, on-demand instances, and storage locations like block storage, S3, or file storage.
The sky's the limit with Databricks.
The patches have sometimes caused issues leading to our jobs being paused for about six hours.
Databricks is an easily scalable platform.
Regular updates, patch installations, monitoring, logging, alerting, and disaster recovery activities are crucial for maintaining stability.
They release patches that sometimes break our code.
Although it is too early to definitively state the platform's stability, we have not encountered any issues so far.
Databricks is definitely a very stable product and reliable.
The cost factor differs significantly. When you run Spark application on EKS, you run at the pod level, so you can control the compute cost. But in Amazon EMR, when you have to run one application, you have to launch the entire EC2.
There is room for improvement with respect to retries, handling the volume of data on S3 buckets, cluster provisioning, scaling, termination, security, and integration between services like S3, Glue, Lake Formation, and DynamoDB.
I have thoughts on what would be great to see in the product, such as AI/ML features or additional options.
Adjusting features like worker nodes and node utilization during cluster creation could mitigate these failures.
We prefer using a small to mid-sized cluster for many jobs to keep costs low, but this sometimes doesn't support our operations properly.
We use MLflow for managing MLOps, however, further improvement would be beneficial, especially for large language models and related tools.
Costs are involved based on cluster resources, data volumes, EC2 instances, instance sizes, Kubernetes, Docker services, storage, and data transfers.
I would rate the price for Amazon EMR, where one is high and ten is low, as a good one.
It is not a cheap solution.
I believe that in terms of credits for Databricks, we're spending between £15,000 and £20,000 a month.
Amazon EMR helps in scalability, real-time and batch processing of data, handling efficient data sources, and managing data lakes, data stores, and data marts on file systems and in S3 buckets.
Amazon EMR provides out-of-the-box functionality because we can deploy and get Spark functionality over Hadoop.
The features at Amazon EMR that I have found most valuable are fully customizable functions.
Databricks' capability to process data in parallel enhances data processing speed.
The platform allows us to leverage cloud advantages effectively, enhancing our AI and ML projects.
The Unity Catalog is for data governance, and the Delta Lake is to build the lakehouse.
| Product | Market Share (%) |
|---|---|
| Databricks | 9.2% |
| Amazon EMR | 3.4% |
| Other | 87.4% |

| Company Size | Count |
|---|---|
| Small Business | 6 |
| Midsize Enterprise | 5 |
| Large Enterprise | 12 |
| Company Size | Count |
|---|---|
| Small Business | 25 |
| Midsize Enterprise | 12 |
| Large Enterprise | 56 |
Databricks offers a scalable, versatile platform that integrates seamlessly with Spark and multiple languages, supporting data engineering, machine learning, and analytics in a unified environment.
Databricks stands out for its scalability, ease of use, and powerful integration with Spark, multiple languages, and leading cloud services like Azure and AWS. It provides tools such as the Notebook for collaboration, Delta Lake for efficient data management, and Unity Catalog for data governance. While enhancing data engineering and machine learning workflows, it faces challenges in visualization and third-party integration, with pricing and user interface navigation being common concerns. Despite needing improvements in connectivity and documentation, it remains popular for tasks like real-time processing and data pipeline management.
What features make Databricks unique?
What benefits can users expect from Databricks?
In the tech industry, Databricks empowers teams to perform comprehensive data analytics, enabling them to conduct extensive ETL operations, run predictive modeling, and prepare data for SparkML. In retail, it supports real-time data processing and batch streaming, aiding in better decision-making. Enterprises across sectors leverage its capabilities for creating secure APIs and managing data lakes effectively.
We monitor all Cloud Data Warehouse reviews to prevent fraudulent reviews and keep review quality high. We do not post reviews by company employees or direct competitors. We validate each review for authenticity via cross-reference with LinkedIn, and personal follow-up with the reviewer when necessary.