Try our new research platform with insights from 80,000+ expert users

Amazon SageMaker vs Caffe comparison

 

Comparison Buyer's Guide

Executive Summary

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Amazon SageMaker
Ranking in AI Development Platforms
4th
Average Rating
7.8
Reviews Sentiment
7.0
Number of Reviews
38
Ranking in other categories
Data Science Platforms (2nd)
Caffe
Ranking in AI Development Platforms
28th
Average Rating
7.0
Reviews Sentiment
6.0
Number of Reviews
1
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of February 2026, in the AI Development Platforms category, the mindshare of Amazon SageMaker is 3.7%, down from 6.1% compared to the previous year. The mindshare of Caffe is 1.0%, up from 0.2% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms Market Share Distribution
ProductMarket Share (%)
Amazon SageMaker3.7%
Caffe1.0%
Other95.3%
AI Development Platforms
 

Featured Reviews

Saurabh Jaiswal - PeerSpot reviewer
Python AWS & AI Expert at a tech consulting company
Create innovative assistants with seamless data integration for large-scale projects
The various integration options available in Amazon SageMaker, such as Firehose for connecting to data pipelines, are simple to use. Tools like AWS Glue integrate well for data transformations. The Databricks integration aids data scientists and engineers. SageMaker is fully managed, offers high availability, flexibility with TensorFlow, PyTorch, and MXNet, and comes with pre-trained algorithms for forecasting, anomaly detection, and more.
RL
Machine/Deep Learning Engineer at UpWork Freelancer
Speeds up the development process but needs to evolve more to stay relevant
In the future, they should expand text processing, for a recommendation system, or to support some other models as well — that would be great. The concept of Caffe is a little bit complex because it was developed and based in C++. They need to make it easier for a new developer, data scientist, or a new machine or deep learning engineer to understand it. You can't work with metrics and vectors as Python does. Python is a vector-oriented language, but Caffe is not. When you deal with memory in C++, you have to allocate the data you will use in memory. You have to manage everything in C++. Conversely, in Python, you don't need to do that since everything is abstract and done by Python itself. It depends on every use case or your requirement goals. Some clients will require you to use Caffe because maybe their projects are old and they want to continue with Caffe. Others are comfortable with their current situation or they are afraid of migrating to another library. From my point of view, they need to make it easier for a new developer to use it. They should incorporate Python API to make it richer, overall.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The tool makes our ML model development a bit more efficient because everything is in one environment."
"The superb thing that SageMaker brings is that it wraps everything well. It's got the deployment, the whole framework."
"The most valuable feature of Amazon SageMaker for me is the model deployment service."
"The feature I found most valuable is the data catalog, as it assists with the lineage of data through the preparation pipeline."
"The most valuable features include the ML operations that allow for designing, deploying, testing, and evaluating models."
"The few projects we have done have been promising."
"SageMaker supports building, training, and deploying AI models from scratch, which is crucial for my ML project."
"The tangible benefits we have observed from using Amazon SageMaker include improved time to insight and generally the common stack that is easier to support over time."
"Caffe has helped our company become up-to-date in the market and has helped us speed up the development process of our projects."
 

Cons

"AI is a new area and AWS needs to have an internship training program available."
"I would suggest that Amazon SageMaker provide free slots to allow customers to practice, such as a free slot to try out working with a Sandbox."
"I had to create custom templates for labeling multi-data sets, such as text and images, which was time-consuming."
"Lacking in some machine learning pipelines."
"Improvement is needed in the no-code and low-code capabilities of Amazon SageMaker. This would empower citizen data scientists to utilize the tool more effectively since many data scientists do not have a core development background."
"One area for improvement is the pricing, which can be quite high."
"The solution needs to be cheaper since it now charges per document for extraction."
"Improvements are needed in terms of complexity, data security, and access policy integration in Amazon SageMaker."
"The concept of Caffe is a little bit complex because it was developed and based in C++. They need to make it easier for a new developer, data scientist, or a new machine or deep learning engineer to understand it."
 

Pricing and Cost Advice

"On a scale from one to ten, where one is cheap, and ten is expensive, I rate the solution's pricing a six out of ten."
"In terms of pricing, I'd also rate it ten out of ten because it's been beneficial compared to other solutions."
"Amazon SageMaker is a very expensive product."
"The product is expensive."
"The pricing could be better, especially for querying. The per-query model feels expensive."
"SageMaker is worth the money for our use case."
"The pricing is comparable."
"The support costs are 10% of the Amazon fees and it comes by default."
Information not available
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
881,707 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
18%
Computer Software Company
10%
Manufacturing Company
9%
University
6%
No data available
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business12
Midsize Enterprise11
Large Enterprise17
No data available
 

Questions from the Community

How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
What do you like most about Amazon SageMaker?
We've had experience with unique ML projects using SageMaker. For example, we're developing a platform similar to ChatGPT that requires models. We utilize Amazon SageMaker to create endpoints for t...
What is your experience regarding pricing and costs for Amazon SageMaker?
If you manage it effectively, their pricing is reasonable. It's similar to anything in the cloud; if you don't manage it properly, it can be expensive, but if you do, it's fine.
Ask a question
Earn 20 points
 

Comparisons

 

Also Known As

AWS SageMaker, SageMaker
No data available
 

Overview

 

Sample Customers

DigitalGlobe, Thomson Reuters Center for AI and Cognitive Computing, Hotels.com, GE Healthcare, Tinder, Intuit
Information Not Available
Find out what your peers are saying about Microsoft, Hugging Face, Google and others in AI Development Platforms. Updated: February 2026.
881,707 professionals have used our research since 2012.