Try our new research platform with insights from 80,000+ expert users

Amazon SageMaker vs Starburst Enterprise comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Amazon SageMaker
Ranking in Data Science Platforms
3rd
Average Rating
7.8
Reviews Sentiment
7.1
Number of Reviews
37
Ranking in other categories
AI Development Platforms (5th)
Starburst Enterprise
Ranking in Data Science Platforms
12th
Average Rating
8.6
Reviews Sentiment
6.9
Number of Reviews
2
Ranking in other categories
Streaming Analytics (14th)
 

Mindshare comparison

As of July 2025, in the Data Science Platforms category, the mindshare of Amazon SageMaker is 6.2%, down from 9.3% compared to the previous year. The mindshare of Starburst Enterprise is 2.2%, up from 1.7% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

Saurabh Jaiswal - PeerSpot reviewer
Create innovative assistants with seamless data integration for large-scale projects
The various integration options available in Amazon SageMaker ( /products/amazon-sagemaker-reviews ), such as Firehose for connecting to data pipelines, are simple to use. Tools like AWS Glue ( /products/aws-glue-reviews ) integrate well for data transformations. The Databricks ( /products/databricks-reviews ) integration aids data scientists and engineers. SageMaker is fully managed, offers high availability, flexibility with TensorFlow ( /products/tensorflow-reviews ), PyTorch ( /products/pytorch-reviews ), and MXNet ( /products/mxnet-reviews ), and comes with pre-trained algorithms for forecasting, anomaly detection, and more.
KamleshPant - PeerSpot reviewer
Connects to any data source from any region and offers unified access
There are no specific projects supported by Starburst regarding AI initiatives or machine learning projects. In the future, if we have all the data available, we can definitely capitalize on AI/ML and LLM capabilities to summarize data and gain insights. That's our future goal, but we haven't reached that point yet. There should be support for REST API data sources to access data from the web. We often have data coming in and communicate with data sources via REST API calls. I don't see that capability in Starburst currently; everything is through JDBC or ODBC. If Starburst could seamlessly access data using REST API capabilities, it would be a game-changer. The self-service data management features, like self-service materialized views, are great, but they can be a bit complex for basic users to understand.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"They offer insights into everyone making calls in my organization."
"The deployment is very good, where you only need to press a few buttons."
"Amazon SageMaker is highly valuable for managing ML workloads. It connects to AWS cloud resources, making it easy to deploy algorithms and collaborate using tools like GitLab. It offers a wide range of Python libraries and other necessary tools for modelling and algorithms."
"I have contacted the solution's technical support, and they were really good. I rate the technical support a ten out of ten."
"I have seen a return on investment, probably a factor of four or five."
"SageMaker supports building, training, and deploying AI models from scratch, which is crucial for my ML project."
"Allows you to create API endpoints."
"We've had experience with unique ML projects using SageMaker. For example, we're developing a platform similar to ChatGPT that requires models. We utilize Amazon SageMaker to create endpoints for these models, making accessing them convenient as needed."
"It's very scalable, fast performing, and supports many catalogs."
"We have noticed improvements in performance using Starburst Enterprise. It handles complex data, including reading and partitioning files. We can add a new catalog to Starburst Enterprise by providing connection details and service account information. This allows us to integrate with existing tools, such as the Snowflake database, which we use for data protection in our project."
 

Cons

"Amazon SageMaker could improve in the area of hyperparameter tuning by offering more automated suggestions and tips during the tuning process."
"The dashboard could be improved by including more features and providing more information about deployed models, their drift, performance, scaling, and customization options."
"I had to create custom templates for labeling multi-data sets, such as text and images, which was time-consuming."
"The product must provide better documentation."
"In my opinion, one improvement for Amazon SageMaker would be to offer serverless GPUs. Currently, we incur costs on an hourly basis. It would be beneficial if the tool could provide pay-as-you-go pricing based on endpoints."
"SageMaker would be improved with the addition of reporting services."
"The payment and monitoring metrics are a bit confusing not only for Amazon SageMaker but also for the range of other products that fall under AWS, especially for a new user of the product."
"Improvement is needed in the no-code and low-code capabilities of Amazon SageMaker."
"There should be support for REST API data sources to access data from the web."
"Starburst Enterprise could improve by offering additional features similar to those provided by other SQL query tools. For example, incorporating functionalities like pivot tables would make it more feasible to use."
 

Pricing and Cost Advice

"The cost offers a pay-as-you-go pricing model. It depends on the instance that you do."
"Amazon SageMaker is a very expensive product."
"The pricing could be better, especially for querying. The per-query model feels expensive."
"On a scale from one to ten, where one is cheap, and ten is expensive, I rate the solution's pricing a six out of ten."
"The support costs are 10% of the Amazon fees and it comes by default."
"The solution is relatively cheaper."
"The pricing is comparable."
"I would rate the solution's price a ten out of ten since it is very high."
"I haven't personally dealt with the pricing aspects first-hand, but from what I understand, it largely depends on the specifics of your setup, especially the machines you use on AWS. The cost of using Starburst Enterprise can vary based on the amount of data you're processing and the type of machines you opt for, whether on AWS or another cloud platform."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
860,592 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
19%
Computer Software Company
12%
Manufacturing Company
8%
Educational Organization
7%
Financial Services Firm
44%
Computer Software Company
8%
Government
5%
Energy/Utilities Company
5%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
What do you like most about Amazon SageMaker?
We've had experience with unique ML projects using SageMaker. For example, we're developing a platform similar to ChatGPT that requires models. We utilize Amazon SageMaker to create endpoints for t...
What is your experience regarding pricing and costs for Amazon SageMaker?
The pricing is high, around an eight. However, SageMaker offers free trials for the first two months, allowing users to determine which features they need. It is considered value for money given it...
What is your experience regarding pricing and costs for Starburst Enterprise?
I haven't personally dealt with the pricing aspects first-hand, but from what I understand, it largely depends on the specifics of your setup, especially the machines you use on AWS. The cost of us...
What needs improvement with Starburst Enterprise?
There are no specific projects supported by Starburst regarding AI initiatives or machine learning projects. In the future, if we have all the data available, we can definitely capitalize on AI/ML ...
What is your primary use case for Starburst Enterprise?
We use Starburst with one client who is exploring their ecosystem to remove data silos and enable data access across departments. It's a very big ecosystem, like a finance institute. They are curre...
 

Also Known As

AWS SageMaker, SageMaker
No data available
 

Overview

 

Sample Customers

DigitalGlobe, Thomson Reuters Center for AI and Cognitive Computing, Hotels.com, GE Healthcare, Tinder, Intuit
Information Not Available
Find out what your peers are saying about Amazon SageMaker vs. Starburst Enterprise and other solutions. Updated: June 2025.
860,592 professionals have used our research since 2012.