Try our new research platform with insights from 80,000+ expert users

Amazon SageMaker vs Starburst Enterprise comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Amazon SageMaker
Ranking in Data Science Platforms
3rd
Average Rating
7.8
Reviews Sentiment
7.1
Number of Reviews
36
Ranking in other categories
AI Development Platforms (5th)
Starburst Enterprise
Ranking in Data Science Platforms
14th
Average Rating
8.6
Reviews Sentiment
6.9
Number of Reviews
2
Ranking in other categories
Streaming Analytics (12th)
 

Mindshare comparison

As of April 2025, in the Data Science Platforms category, the mindshare of Amazon SageMaker is 7.3%, down from 9.8% compared to the previous year. The mindshare of Starburst Enterprise is 2.2%, up from 1.6% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

Hemant Paralkar - PeerSpot reviewer
Improves team collaboration with advanced feature sharing but needs a better user experience
Improvement is needed in the no-code and low-code capabilities of Amazon SageMaker. This would empower citizen data scientists to utilize the tool more effectively since many data scientists do not have a core development background. Additionally, dealing with frequent UI updates can be challenging, especially for infrastructure architects like myself. It involves effort to migrate to new UIs, making the updates not seamless. User auditing requires enhancements as tracking operations performed by users can be difficult due to dynamic IP validation and role propagation.
KamleshPant - PeerSpot reviewer
Connects to any data source from any region and offers unified access
There are no specific projects supported by Starburst regarding AI initiatives or machine learning projects. In the future, if we have all the data available, we can definitely capitalize on AI/ML and LLM capabilities to summarize data and gain insights. That's our future goal, but we haven't reached that point yet. There should be support for REST API data sources to access data from the web. We often have data coming in and communicate with data sources via REST API calls. I don't see that capability in Starburst currently; everything is through JDBC or ODBC. If Starburst could seamlessly access data using REST API capabilities, it would be a game-changer. The self-service data management features, like self-service materialized views, are great, but they can be a bit complex for basic users to understand.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The evolution from SageMaker Classic to SageMaker Studio, particularly the UI part of Studio, is commendable."
"The superb thing that SageMaker brings is that it wraps everything well. It's got the deployment, the whole framework."
"They offer insights into everyone making calls in my organization."
"We've had experience with unique ML projects using SageMaker. For example, we're developing a platform similar to ChatGPT that requires models. We utilize Amazon SageMaker to create endpoints for these models, making accessing them convenient as needed."
"The support is very good with well-trained engineers whose training curriculum is rigorous."
"The solution is easy to scale...The documentation and online community support have been sufficient for us so far."
"I appreciate the ease of use in Amazon SageMaker."
"SageMaker is a comprehensive platform where I can perform all machine learning activities."
"We have noticed improvements in performance using Starburst Enterprise. It handles complex data, including reading and partitioning files. We can add a new catalog to Starburst Enterprise by providing connection details and service account information. This allows us to integrate with existing tools, such as the Snowflake database, which we use for data protection in our project."
"It's very scalable, fast performing, and supports many catalogs."
 

Cons

"The solution is complex to use."
"The main challenge with Amazon SageMaker is the integrations."
"The user interface (UI) and user experience (UX) of SageMaker and AWS, in general, need improvement as they are not intuitive and require substantial time to learn how to use specific services."
"The documentation must be made clearer and more user-friendly."
"Improvement is needed in the no-code and low-code capabilities of Amazon SageMaker."
"While integration is available, there are concerns about how secure this integration is, particularly when exposing data to SageMaker."
"Amazon SageMaker can make it simpler to manage the data flow from start to finish, such as by integrating data, usingthe machine, and deploying models. This process could be more user-friendly compared to other tools. I would also like to improve integration with Bedrock and the LLM connection for AWS."
"When starting a new session, the waiting time can be quite long, ranging from two to five minutes."
"Starburst Enterprise could improve by offering additional features similar to those provided by other SQL query tools. For example, incorporating functionalities like pivot tables would make it more feasible to use."
"There should be support for REST API data sources to access data from the web."
 

Pricing and Cost Advice

"There is no license required for the solution since you can use it on demand."
"SageMaker is worth the money for our use case."
"Amazon SageMaker is a very expensive product."
"On average, customers pay about $300,000 USD per month."
"The cost offers a pay-as-you-go pricing model. It depends on the instance that you do."
"In terms of pricing, I'd also rate it ten out of ten because it's been beneficial compared to other solutions."
"The solution is relatively cheaper."
"The product is expensive."
"I haven't personally dealt with the pricing aspects first-hand, but from what I understand, it largely depends on the specifics of your setup, especially the machines you use on AWS. The cost of using Starburst Enterprise can vary based on the amount of data you're processing and the type of machines you opt for, whether on AWS or another cloud platform."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
845,406 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
18%
Educational Organization
13%
Computer Software Company
11%
Manufacturing Company
8%
Financial Services Firm
44%
Computer Software Company
10%
Energy/Utilities Company
5%
Government
4%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
What do you like most about Amazon SageMaker?
We've had experience with unique ML projects using SageMaker. For example, we're developing a platform similar to ChatGPT that requires models. We utilize Amazon SageMaker to create endpoints for t...
What is your experience regarding pricing and costs for Amazon SageMaker?
Before deploying SageMaker, I reviewed the pricing, especially for notebook instances. The cost for small to medium instances is not very high.
What is your experience regarding pricing and costs for Starburst Enterprise?
I haven't personally dealt with the pricing aspects first-hand, but from what I understand, it largely depends on the specifics of your setup, especially the machines you use on AWS. The cost of us...
What needs improvement with Starburst Enterprise?
There are no specific projects supported by Starburst regarding AI initiatives or machine learning projects. In the future, if we have all the data available, we can definitely capitalize on AI/ML ...
What is your primary use case for Starburst Enterprise?
We use Starburst with one client who is exploring their ecosystem to remove data silos and enable data access across departments. It's a very big ecosystem, like a finance institute. They are curre...
 

Also Known As

AWS SageMaker, SageMaker
No data available
 

Overview

 

Sample Customers

DigitalGlobe, Thomson Reuters Center for AI and Cognitive Computing, Hotels.com, GE Healthcare, Tinder, Intuit
Information Not Available
Find out what your peers are saying about Amazon SageMaker vs. Starburst Enterprise and other solutions. Updated: March 2025.
845,406 professionals have used our research since 2012.