Try our new research platform with insights from 80,000+ expert users

Cloudera Data Science Workbench vs Microsoft Azure Machine Learning Studio comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Cloudera Data Science Workb...
Ranking in Data Science Platforms
23rd
Average Rating
7.0
Reviews Sentiment
6.9
Number of Reviews
2
Ranking in other categories
No ranking in other categories
Microsoft Azure Machine Lea...
Ranking in Data Science Platforms
4th
Average Rating
7.8
Reviews Sentiment
7.1
Number of Reviews
62
Ranking in other categories
AI Development Platforms (5th)
 

Mindshare comparison

As of October 2025, in the Data Science Platforms category, the mindshare of Cloudera Data Science Workbench is 1.3%, down from 1.5% compared to the previous year. The mindshare of Microsoft Azure Machine Learning Studio is 4.9%, down from 6.2% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms Market Share Distribution
ProductMarket Share (%)
Microsoft Azure Machine Learning Studio4.9%
Cloudera Data Science Workbench1.3%
Other93.8%
Data Science Platforms
 

Featured Reviews

Ismail Peer - PeerSpot reviewer
Useful for data science modeling but improvement is needed in MLOps and pricing
If you don't configure CDSW well, then it might be not useful for you. Deploying the tool can vary in complexity, but most of the time, it's relatively simple and straightforward. Triggering a job from data to production is easy, as the platform automates the deployment process. However, ensuring optimal resource allocation is essential for smooth operations.
Takayuki Umehara - PeerSpot reviewer
Streamlined workflows with drag and drop convenience but needs enhancements in AI
I use Machine Learning Studio for system reselling and integration Machine Learning Studio is easy to use, with a significant feature being the drag and drop interface that enhances workflow without any complaints. It provides a return on investment and cost savings, proving beneficial for…

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"I appreciate CDSW's ability to logically segregate environments, such as data, DR, and production, ensuring they don't interfere with each other. The deployment of machine learning is fast and easy to manage. Its API calls are also fast."
"The Cloudera Data Science Workbench is customizable and easy to use."
"The ability to do the templating and be able to transfer it so that I can easily do multiple types of models and data mining is a valuable aspect of this solution. You only have to set up the flows, the templates, and the data once and then you can make modifications and test different segmentations throughout."
"Azure's AutoML feature is probably better than the competition."
"Auto email and studio are great features."
"The most valuable feature is the knowledge bank, which allows us to ask questions and the AI will automatically pull the pre-prescribed responses."
"Split dataset, variety of algorithms, visualizing the data, and drag and drop capability are the features I appreciate most."
"It helps in building customized models, which are easy for clients to use​.​​"
"The most valuable feature is data normalization."
"​It has helped in reducing the time involved for coding using R and/or Python."
 

Cons

"The tool's MLOps is not good. It's pricing also needs to improve."
"Running this solution requires a minimum of 12GB to 16GB of RAM."
"In terms of improvement, I'd like to have more ability to construct and understand the detailed impact of the variables on the model. Their algorithms are very powerful and they explain overall the net contribution of each of the variables to the solution. In terms of being able to say to people "If you did this, you'll get this much more improvement" it wasn't great."
"Microsoft Azure Machine Learning Studio worked okay for me, so right now, I don't have any room for improvement in mind for it. What I'd like added to Microsoft Azure Machine Learning Studio in its next version is a categorization for use cases or a template that makes the use cases simple to map out, for example, for healthcare, medical, or finance use cases, etc. This would be very helpful for users of Microsoft Azure Machine Learning Studio, especially for beginners."
"The interface is a bit overloaded."
"If you want to be able to deploy your tools outside of Microsoft Azure, this is not the best choice."
"They should have a desktop version to work on the platform."
"One area where Azure Machine Learning Studio could improve is its user interface structure."
"The high price of the product is an area of concern where improvements are required."
"In the Machine Learning Studio, particularly the Designer part, which is essentially Azure's demo designer, there is room for improvement. Many customers and users tend to switch to Microsoft Azure Multi-Joiners, which is a more basic version, but they do so internally. One area that could use enhancement is the process of connecting components. Currently, every time you want to connect a component, such as linking it to your storage or an instance like EC2, you have to input your username and password repeatedly. This can be quite cumbersome. Google, for instance, has made it more user-friendly by allowing easy access for connecting services within a workspace. In a workspace, you can set up various resources like storage, a database cluster, machine learning studio, and more. When connecting these services, there's no need to enter your username and password each time, making it a more efficient process. Another aspect to consider is the role of the designer, and they were to integrate a large language model to handle various tasks, it could significantly enhance the overall scalability and usability of the platform."
 

Pricing and Cost Advice

"The product is expensive."
"The platform's price is low."
"The licensing cost is very cheap. It's less than $50 a month."
"I rate the product price as a nine on a scale of one to ten, where ten means it is very expensive."
"When we got our first models and were ready for the user acceptance testing, our licensing fees were between €2,500 ($2,750 USD) and €3,000 ($3,300 USD) monthly."
"There is a license required for this solution."
"My team didn't deal with the licensing for Microsoft Azure Machine Learning Studio, so I'm unable to comment on pricing, but the money that was spent on the tool was worth it."
"The solution operates on a pay-per-use model."
"Last year, we paid 60,000 for Microsoft Azure Machine Learning Studio in our department."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
868,706 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
35%
Computer Software Company
9%
Healthcare Company
8%
Manufacturing Company
7%
Financial Services Firm
12%
Computer Software Company
9%
Manufacturing Company
9%
University
5%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
By reviewers
Company SizeCount
Small Business23
Midsize Enterprise6
Large Enterprise30
 

Questions from the Community

What do you like most about Cloudera Data Science Workbench?
I appreciate CDSW's ability to logically segregate environments, such as data, DR, and production, ensuring they don't interfere with each other. The deployment of machine learning is fast and easy...
What needs improvement with Cloudera Data Science Workbench?
The tool's MLOps is not good. It's pricing also needs to improve.
What is your primary use case for Cloudera Data Science Workbench?
We have different use cases. Our banking use case uses machine learning to identify customer life events and recommend the best-suited card products. These machine-learning models are deployed in o...
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
What do you like most about Microsoft Azure Machine Learning Studio?
The learning curve is very low. Operationalizing the model is also very easy within the Azure ecosystem.
What is your experience regarding pricing and costs for Microsoft Azure Machine Learning Studio?
The pricing for Microsoft Azure Machine Learning Studio is reasonable since it's pay as you go, meaning it won't cost excessively unless specific resources are used.
 

Also Known As

CDSW
Azure Machine Learning, MS Azure Machine Learning Studio
 

Overview

 

Sample Customers

IQVIA, Rush University Medical Center, Western Union
Walgreens Boots Alliance, Schneider Electric, BP
Find out what your peers are saying about Cloudera Data Science Workbench vs. Microsoft Azure Machine Learning Studio and other solutions. Updated: September 2025.
868,706 professionals have used our research since 2012.