Try our new research platform with insights from 80,000+ expert users

Databricks vs Spring Cloud Data Flow comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 17, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Databricks
Ranking in Streaming Analytics
1st
Average Rating
8.2
Reviews Sentiment
7.0
Number of Reviews
91
Ranking in other categories
Cloud Data Warehouse (9th), Data Science Platforms (1st)
Spring Cloud Data Flow
Ranking in Streaming Analytics
10th
Average Rating
7.8
Reviews Sentiment
6.8
Number of Reviews
9
Ranking in other categories
Data Integration (21st)
 

Mindshare comparison

As of October 2025, in the Streaming Analytics category, the mindshare of Databricks is 12.5%, down from 12.8% compared to the previous year. The mindshare of Spring Cloud Data Flow is 4.6%, up from 4.6% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics Market Share Distribution
ProductMarket Share (%)
Databricks12.5%
Spring Cloud Data Flow4.6%
Other82.9%
Streaming Analytics
 

Featured Reviews

ShubhamSharma7 - PeerSpot reviewer
Capability to integrate diverse coding languages in a single notebook greatly enhances workflow
Databricks offers various courses that I can use, whether it's PySpark, Scala, or R. I can leverage all these courses in a single notebook, which is beneficial for clients as they can access various tools in one place whenever needed. This is quite significant. I usually work with PySpark based on client requirements. After coding, I feed the Databricks notebooks into the ADF pipeline for updates. Databricks' capability to process data in parallel enhances data processing speed. Furthermore, I can connect our Databricks notebook directly with Power BI and other visualization tools like Qlik. Once we develop code, it allows us to transform raw data into visualizations for clients using analysis diagrams, which is very helpful.
Alokik Gupta - PeerSpot reviewer
Effective microservice and task management but needs more dashboard features
The dashboards in Spring Cloud Dataflow are quite valuable. By injecting the dependency of Spring Cloud Dataflow into our Spring Boot application and annotating it with 'enable task annotation', we can manage tasks effectively. Additionally, the platform allows us to create pipelines and use microservices like a logical AND gate, giving us greater control over our microservices.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Databricks gives us the ability to build a lakehouse framework and do everything implicit to this type of database structure. We also like the ability to stream events. Databricks covers a broad spectrum, from reporting and machine learning to streaming events. It's important for us to have all these features in one platform."
"It's very simple to use Databricks Apache Spark."
"Its lightweight and fast processing are valuable."
"It is a cost-effective solution."
"Databricks integrates well with other solutions."
"I would rate them ten out of ten."
"What I like about Databricks is that it's one of the most popular platforms that give access to folks who are trying not just to do exploratory work on the data but also go ahead and build advanced modeling and machine learning on top of that."
"It is fast, it's scalable, and it does the job it needs to do."
"The dashboards in Spring Cloud Dataflow are quite valuable."
"The most valuable feature is real-time streaming."
"The product is very user-friendly."
"The solution's most valuable feature is that it allows us to use different batch data sources, retrieve the data, and then do the data processing, after which we can convert and store it in the target."
"The best thing I like about Spring Cloud Data Flow is its plug-and-play model."
"There are a lot of options in Spring Cloud. It's flexible in terms of how we can use it. It's a full infrastructure."
"The most valuable features of Spring Cloud Data Flow are the simple programming model, integration, dependency Injection, and ability to do any injection. Additionally, auto-configuration is another important feature because we don't have to configure the database and or set up the boilerplate in the database in every project. The composability is good, we can create small workloads and compose them in any way we like."
"The ease of deployment on Kubernetes, the seamless integration for orchestration of various pipelines, and the visual dashboard that simplifies operations even for non-specialists such as quality analysts."
 

Cons

"The pricing of Databricks could be cheaper."
"The tool should improve its integration with other products."
"The product should incorporate more learning aspects. It needs to have a free trial version that the team can practice."
"We often use a single cluster to ingest Databricks, which Databricks doesn't recommend. They suggest using a no-cluster solution like job clusters. This can be overwhelming for us because we started smaller."
"The query plan is not easy with Databrick's job level. If I want to tune any of the code, it is not easily available in the blogs as well."
"There should be better integration with other platforms."
"Can be improved by including drag-and-drop features."
"Databricks has a lack of debuggers, and it would be good to see more components."
"Some of the features, like the monitoring tools, are not very mature and are still evolving."
"The configurations could be better. Some configurations are a little bit time-consuming in terms of trying to understand using the Spring Cloud documentation."
"On the tool's online discussion forums, you may get stuck with an issue, making it an area where improvements are required."
"Spring Cloud Data Flow is not an easy-to-use tool, so improvements are required."
"The solution's community support could be improved."
"There were instances of deployment pipelines getting stuck, and the dashboard not always accurately showing the application status, requiring manual intervention such as rerunning applications or refreshing the dashboard."
"I would improve the dashboard features as they are not very user-friendly."
"Spring Cloud Data Flow could improve the user interface. We can drag and drop in the application for the configuration and settings, and deploy it right from the UI, without having to run a CI/CD pipeline. However, that does not work with Kubernetes, it only works when we are working with jars as the Spring Cloud Data Flow applications."
 

Pricing and Cost Advice

"Databricks are not costly when compared with other solutions' prices."
"The billing of Databricks can be difficult and should improve."
"The solution is a good value for batch processing and huge workloads."
"We have only incurred the cost of our AWS cloud services. This is because during this period, Databricks provided us with an extended evaluation period, and we have not spent much money yet. We are just starting to incur costs this month, I will know more later on the full cost perspective."
"The product pricing is moderate."
"I rate the price of Databricks as eight out of ten."
"It is an expensive tool. The licensing model is a pay-as-you-go one."
"I'm not involved in the financing, but I can say that the solution seemed reasonably priced compared to the competitors. Similar products are usually in the same price range. With five being affordable and one being expensive, I would rate Databricks a four out of five."
"If you want support from Spring Cloud Data Flow there is a fee. The Spring Framework is open-source and this is a free solution."
"This is an open-source product that can be used free of charge."
"The solution provides value for money, and we are currently using its community edition."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
868,787 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
18%
Computer Software Company
9%
Manufacturing Company
9%
Healthcare Company
6%
Financial Services Firm
24%
Computer Software Company
16%
Retailer
8%
Manufacturing Company
5%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business25
Midsize Enterprise12
Large Enterprise56
By reviewers
Company SizeCount
Small Business3
Midsize Enterprise1
Large Enterprise5
 

Questions from the Community

Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
Which would you choose - Databricks or Azure Stream Analytics?
Databricks is an easy-to-set-up and versatile tool for data management, analysis, and business analytics. For analytics teams that have to interpret data to further the business goals of their orga...
What needs improvement with Spring Cloud Data Flow?
There were instances of deployment pipelines getting stuck, and the dashboard not always accurately showing the application status, requiring manual intervention such as rerunning applications or r...
What is your primary use case for Spring Cloud Data Flow?
We had a project for content management, which involved multiple applications each handling content ingestion, transformation, enrichment, and storage for different customers independently. We want...
What advice do you have for others considering Spring Cloud Data Flow?
I would definitely recommend Spring Cloud Data Flow. It requires minimal additional effort or time to understand how it works, and even non-specialists can use it effectively with its friendly docu...
 

Also Known As

Databricks Unified Analytics, Databricks Unified Analytics Platform, Redash
No data available
 

Overview

 

Sample Customers

Elsevier, MyFitnessPal, Sharethrough, Automatic Labs, Celtra, Radius Intelligence, Yesware
Information Not Available
Find out what your peers are saying about Databricks vs. Spring Cloud Data Flow and other solutions. Updated: September 2025.
868,787 professionals have used our research since 2012.