Try our new research platform with insights from 80,000+ expert users

Domino Data Science Platform vs Microsoft Azure Machine Learning Studio comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Domino Data Science Platform
Ranking in Data Science Platforms
15th
Average Rating
7.6
Reviews Sentiment
6.7
Number of Reviews
2
Ranking in other categories
No ranking in other categories
Microsoft Azure Machine Lea...
Ranking in Data Science Platforms
4th
Average Rating
7.8
Reviews Sentiment
7.1
Number of Reviews
62
Ranking in other categories
AI Development Platforms (4th)
 

Mindshare comparison

As of August 2025, in the Data Science Platforms category, the mindshare of Domino Data Science Platform is 2.7%, down from 2.9% compared to the previous year. The mindshare of Microsoft Azure Machine Learning Studio is 5.0%, down from 7.2% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

AS
Accelerated machine learning model development with seamless deployment
We used Domino Data Science Platform for developing and working with machine learning models. It facilitated end-to-end development processes. Domino is based on Git, enabling collaboration similar to using Git. Each user operates on their own equivalent of a branch or fork, and once finished, they…
Takayuki Umehara - PeerSpot reviewer
Streamlined workflows with drag and drop convenience but needs enhancements in AI
I use Machine Learning Studio for system reselling and integration Machine Learning Studio is easy to use, with a significant feature being the drag and drop interface that enhances workflow without any complaints. It provides a return on investment and cost savings, proving beneficial for…

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The scalability of the solution is good; I'd rate it four out of five."
"The workspaces, which are like wrappers of Docker containers, made it easy to start development environments using Domino."
"The solution's most beneficial feature is its integration with Azure."
"Machine Learning Studio is easy to use, with a significant feature being the drag and drop interface that enhances workflow without any complaints."
"Machine Learning Studio is easy to use."
"Microsoft Azure Machine Learning Studio is easy to use and deploy."
"I find Microsoft Azure Machine Learning Studio advantageous because it allows integration with Titan Scratch and offers an easy-to-use drag-and-drop menu for developing machine learning models."
"The most valuable feature of this solution is the ability to use all of the cognitive services, prebuilt from Azure."
"It is a scalable solution…It is a pretty stable solution…The solution's initial setup process was pretty straightforward."
"The product supports open-source tools."
 

Cons

"The predictive analysis feature needs improvement."
"The deployment of large language models (LLMs) could be improved."
"Easier customization and configuration would be beneficial."
"Performance is very poor."
"Microsoft Azure Machine Learning Studio could improve by adding pixel or image analysis. This is a priority for me."
"The initial setup time of the containers to run the experiment is a bit long."
"The price could be improved."
"One problem I experience is that switching between multiple accounts can be difficult. I don't think there are any major issues. Mostly, the biggest challenge is to identify business solutions to this. The tool should keep on updating new algorithms and not stay static."
"The solution must increase the amount of data sources that can be integrated."
"I think it should be made cheaper for certain people…It may appear costlier for those who don't consider time important."
 

Pricing and Cost Advice

Information not available
"In terms of pricing, for any cloud solution, you should know the tricks of the trade and how to use it, otherwise, you'll end up paying a lot of money irrespective of the cloud provider, so at least for Microsoft Azure Machine Learning Studio pricing versus AWS, I would rate it three out of five, with one being the most expensive, and five being the cheapest. It could be cheaper, but you also have to be careful when choosing the plans, for example, consider the architecture and a lot of other factors before choosing your plan, if you don't want to end up paying more. If your cloud provider has an optimizer that seems to be available in every provider, that would keep alerting you in terms of resources not being used as much, then that would help you with budgeting."
"The platform's price is low."
"There is a lack of certainty with the solution's pricing."
"From a developer's perspective, I find the price of this solution high."
"When we got our first models and were ready for the user acceptance testing, our licensing fees were between €2,500 ($2,750 USD) and €3,000 ($3,300 USD) monthly."
"The product is not that expensive."
"ML Studio's pricing becomes a numbers game."
"I would rate the pricing an eight out of ten, with ten being very expensive. Not very expensive, not very cheap."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
865,295 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
39%
Manufacturing Company
10%
Insurance Company
8%
Computer Software Company
6%
Financial Services Firm
12%
Manufacturing Company
9%
Computer Software Company
9%
University
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

What needs improvement with Domino Data Science Platform?
The deployment of large language models (LLMs) could be improved. Currently, Domino provides a simple server that cannot handle big deployments, which is not suitable for LLMs.
What is your primary use case for Domino Data Science Platform?
We used Domino Data Science Platform for developing and working with machine learning models. It facilitated end-to-end development processes. Domino is based on Git, enabling collaboration similar...
What advice do you have for others considering Domino Data Science Platform?
It's important to have a DevOps team well-versed with cloud-native solutions to manage Domino effectively. Relying solely on data scientists might not be sufficient. I'd rate the solution eight out...
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
What do you like most about Microsoft Azure Machine Learning Studio?
The learning curve is very low. Operationalizing the model is also very easy within the Azure ecosystem.
What is your experience regarding pricing and costs for Microsoft Azure Machine Learning Studio?
The pricing for Microsoft Azure Machine Learning Studio is reasonable since it's pay as you go, meaning it won't cost excessively unless specific resources are used.
 

Also Known As

Domino Data Lab Platform
Azure Machine Learning, MS Azure Machine Learning Studio
 

Interactive Demo

Demo not available
 

Overview

 

Sample Customers

Allstate, GSK, AstraZeneca, Federal Reserve, US Navy, Bristol Myers Squibb, Bayer, BNP Paribas, Moodys, New York Life
Walgreens Boots Alliance, Schneider Electric, BP
Find out what your peers are saying about Domino Data Science Platform vs. Microsoft Azure Machine Learning Studio and other solutions. Updated: July 2025.
865,295 professionals have used our research since 2012.