Try our new research platform with insights from 80,000+ expert users

H2O.ai vs KNIME comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

H2O.ai
Ranking in Data Science Platforms
20th
Average Rating
7.6
Reviews Sentiment
7.2
Number of Reviews
8
Ranking in other categories
Model Monitoring (6th)
KNIME
Ranking in Data Science Platforms
2nd
Average Rating
8.2
Reviews Sentiment
7.1
Number of Reviews
60
Ranking in other categories
Data Mining (1st)
 

Mindshare comparison

As of May 2025, in the Data Science Platforms category, the mindshare of H2O.ai is 1.6%, up from 1.5% compared to the previous year. The mindshare of KNIME is 11.9%, up from 9.9% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

Kashif Yaseen - PeerSpot reviewer
Plug-and-play convenience enhances productivity but needs better multimodal support
We mostly used the solution in the domain that I'm working. We had most of the use cases around chatbots and conversational BI The solution was plug-and-play, meaning most of the components were handled by the solution itself rather than building them from scratch. This was useful for our banking…
Laurence Moseley - PeerSpot reviewer
Has a drag-and-drop interface and AI capabilities
It's difficult to pinpoint one single feature because KNIME has so many. For starters, it's very easy to learn. You can get started with just a one-hour video. The drag-and-drop interface makes it user-friendly. For example, if you want to read an Excel file, drag the "read Excel file" node from the repository, configure it by specifying the file location, and run it. This gives you a table with all your data. Next, you can clean the data by handling missing values, selecting specific columns you want to analyze, and then proceeding with your analysis, such as regression or correlation. KNIME has over 4,500 nodes available for download. In addition, KNIME offers various extensions. For instance, the text processing extension allows you to process text data efficiently. It's more powerful than other tools like NVivo and Palantir. KNIME also has AI capabilities. If you're unsure about the next step, the AI assistant can suggest the most frequently used nodes based on your previous work. Another valuable feature is the integration with Python. If you need to perform a task that requires Python, you can simply add a Python node, write the necessary code,

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The most valuable feature of H2O.ai is that it is plug-and-play."
"AutoML helps in hands-free initial evaluations of efficiency/accuracy of ML algorithms."
"Fast training, memory-efficient DataFrame manipulation, well-documented, easy-to-use algorithms, ability to integrate with enterprise Java apps (through POJO/MOJO) are the main reasons why we switched from Spark to H2O."
"The ease of use in connecting to our cluster machines."
"One of the most interesting features of the product is their driverless component. The driverless component allows you to test several different algorithms along with navigating you through choosing the best algorithm."
"The most valuable features are the machine learning tools, the support for Jupyter Notebooks, and the collaboration that allows you to share it across people."
"It is helpful, intuitive, and easy to use. The learning curve is not too steep."
"It also has very good fundamental machine learning. It has decision trees, linear regression, and neural nets. It has a lot of text mining facilities as well. It's fairly fully-featured."
"The hardest part is keeping a tidy workspace because of the many nodes involved. When teaching, it would be helpful if there was more emphasis on how to group nodes effectively. For example, turning frequently used nodes into a single component can simplify things."
"Clear view of the data at every step of ETL process enables changing the flow as needed."
"Usability, and organising workflows in very neat manner. Controlling workflow through variables is something amazing."
"The tool's analytic capabilities are good."
"The most useful features are the readily available extensions that speed up the work."
"Valuable features include visual workflow creation, workflow variables (parameterisation), automatic caching of all intermediate data sets in the workflow, scheduling with the server."
"It has allowed us to easily implement advanced analytics into various processes."
 

Cons

"I would like to see more features related to deployment."
"H2O.ai can improve in areas like multimodal support and prompt engineering."
"It needs a drag and drop GUI like KNIME, for easy access to and visibility of workflows."
"Referring to bullet-3 as well, H2O DataFrame manipulation capabilities are too primitive."
"On the topic of model training and model governance, this solution cannot handle ten or twelve models running at the same time."
"The interpretability module has room for improvement. Also, it needs to improve its ability to integrate with other systems, like SageMaker, and the overall integration capability."
"The model management features could be improved."
"It lacks the data manipulation capabilities of R and Pandas DataFrames. We would kill for dplyr offloading H2O."
"It's very general in terms of architecture, and as a result, it doesn't support efficient running. That is, the speed needs to be improved."
"They could add more detailed examples of the functionality of every node, how it works and how we can use it, to make things easier at the beginning."
"KNIME can improve by adding more automation tools in the query, similar to UiPath or Blue Prism. It would make the data collection and cleanup duties more versatile."
"It needs more examples, use cases, and MOOC to learn, especially with respect to the algorithms and how to practically create a flow from end-to-end."
"It could input more data acquisitions from other sources and it is difficult to combine with Python."
"The license is quite expensive for us."
"KNIME needs to provide more documentation and training materials, including webinars or online seminars."
"It's difficult to pinpoint one single feature because KNIME has so many. For starters, it's very easy to learn. You can get started with just a one-hour video. The drag-and-drop interface makes it user-friendly. For example, if you want to read an Excel file, drag the "read Excel file" node from the repository, configure it by specifying the file location, and run it. This gives you a table with all your data."
 

Pricing and Cost Advice

"We have seen significant ROI where we were able to use the product in certain key projects and could automate a lot of processes. We were even able to reduce staff."
"KNIME is a cost-effective solution because it’s free of cost."
"There is no cost for using KNIME because it is an open-source solution, but you have to pay if you need a server."
"At this time, I am using the free version of Knime."
"KNIME offers a free version"
"KNIME is an open-source tool, so it's free to use."
"It is free of cost. It is GNU licensed."
"For beginners, the free desktop version is very attractive, but the full server version can be more expensive. I have only used the free version and it offers a fair pricing system. I have been promoting it to others without any compensation or request from the company, simply because I am enthusiastic about it. I am not aware of the pricing for the server version, but it seems to be widely used."
"The price for Knime is okay."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
851,491 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
18%
Computer Software Company
13%
Manufacturing Company
10%
Educational Organization
6%
Financial Services Firm
12%
Manufacturing Company
11%
Computer Software Company
9%
University
8%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What needs improvement with H2O.ai?
H2O.ai can improve in areas like multimodal support and prompt engineering. They are already working on updates and changes. Although I haven't explored all the new products they've added to their ...
What is your primary use case for H2O.ai?
We mostly used the solution in the domain that I'm working. We had most of the use cases around chatbots and conversational BI.
What advice do you have for others considering H2O.ai?
It is important to address data privacy concerns and ensure you're choosing the right vendor that meets your use case demands. Also, you may leave my name, Kashif, but please keep the company name ...
What do you like most about KNIME?
Since KNIME is a no-code platform, it is easy to work with.
What is your experience regarding pricing and costs for KNIME?
I rate the product’s pricing a seven out of ten, where one is cheap and ten is expensive.
What needs improvement with KNIME?
I have seen the potential to interact with Python, which is currently a bit limited. I am interested in the newer version, 5.4, when it becomes available. The machine learning and profileration asp...
 

Comparisons

 

Also Known As

No data available
KNIME Analytics Platform
 

Overview

 

Sample Customers

poder.io, Stanley Black & Decker, G5, PWC, Comcast, Cisco
Infocom Corporation, Dymatrix Consulting Group, Soluzione Informatiche, MMI Agency, Estanislao Training and Solutions, Vialis AG
Find out what your peers are saying about H2O.ai vs. KNIME and other solutions. Updated: April 2025.
851,491 professionals have used our research since 2012.